Tissue Engineering of Cardiac Tissues
Ulrich A. Stock,
Katja Schenke-Layland,
Ulrich A. Stock
Charité University and Heart Center Brandenburg Bernau, Berlin, Germany
Search for more papers by this authorKatja Schenke-Layland
David Geffen School of Medicine, Los Angeles, California
Search for more papers by this authorUlrich A. Stock,
Katja Schenke-Layland,
Ulrich A. Stock
Charité University and Heart Center Brandenburg Bernau, Berlin, Germany
Search for more papers by this authorKatja Schenke-Layland
David Geffen School of Medicine, Los Angeles, California
Search for more papers by this authorFirst published: 14 April 2006
Abstract
The emerging field of cardiac tissue engineering focuses on the development of heart valves and myocardium. Hence, the following article will give a detailed overview of the biomaterials approaches of these two tissues attempting to compromise what has been accomplished so far and what remains to be achieved.
Bibliography
- 1R. Langer and J. P. Vacanti, Tissue engineering. Science 1993; 260: 920–926.
- 2R. E. Clark and E. H. Finke, The morphology of stressed and relaxed human aortic leaflets. Trans. Am. Artif. Intern. Organs 1974; 20B: 437–448.
- 3M. Vert, Bioresorbable polymers for temporary therapeutic applications. Angew Makrom Chem. 1989; 166/167: 155–168.
- 4M. Vert, M. S. Li, G. Spenlehaner, and P. Guerin, Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Med. 1992; 3: 432–446.
- 5D. Hutmacher, M. B. Hürzeler, and H. Schliephake, A review of materials properties of biodegradable and bioresorbable polymers and devices for GTR and GBR applications. Inter. J. Oral Maxillofac. Implants 1996; 11: 667–678.
- 6D. H. Riddick, C. T. DeGrazia, and R. M. Maenza, Comparison of polyglactic and polyglycolic acid sutures in reproductive tissue. Fertl. Steril. 1977; 28: 1220–1225.
- 7J. O. Hollinger, Preliminary report on the osteogenic potential of polylactide (PLA) and polyglycolite (PGA). J. Biomed. Mater. Res. 1983; 17: S71–S82.
- 8D. Hutmacher and M. B. Hürzeler, Biologisch abbaubare Polymere und Membrane für die gesteuerte Gewebe- und Knochenregeneration. Implantologie 1995; 1: 21–37.
- 9W. J. van der Giessen, A. M. Lincoff, R. S. Schwartz et al., Marked inflammatory sequela to implantation of biodegradable and non biodegradable polymers in porcine coronary arteries. Circulation 1996; 94: 1690–1697.
- 10T. Shin-oka, C. Breuer, R. Tanel et al., Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann. Thorac. Surg. 1995; 60: S513–S516.
- 11S. F. Williams, D. P. Martin, D. M. Horowitz, and O. P. Peoples, PHA applications: addressing the price performance issue. I. Tissue engineering. Int. J. Biol. Macromol. 1999; 25: 111–121.
- 12U. A. Stock, M. Nagashima, P. N. Khalil et al., Tissue engineered three leaflet heart valves. J. Thorac. Cardiovasc. Surg. 2000; 119: 732–740.
- 13S. Hein, B. Sohling, G. Gottschalk, and A. Steinbuchel, Biosynthesis of poly(4-hydroxybutyric acid) by recombinant strains of Escherichia coli. FEMS Microbiol. Lett. 1997; 153: 411–418.
- 14S. P. Hoerstrup, R. Sodian, S. Daebritz et al., Functional living trileaflet heart valves grown in vitro. Circulation 2000; 102: III44–III49.
- 15J. Graf, Y. Iwamoto, and M. Sasaki, Identification of an amino acid sequence in laminin mediating cell attachment, chemotaxis and receptor binding. Cell 1987; 48: 989–996.
- 16P. Joshi, C. Y. Chung CY, I. Aukhil, and P. Erikson, Endothelial cells adhere to the RGD domain and the fibrinogen-like terminal knob of tenascin. J. Cell Sci. 1993; 106: 389–400.
- 17A. Sank, K. Rostami, F. Weaver et al., New evidence and new hope concerning endothelial seeding of vascular grafts. Am. J. Surg. 1992; 164: 199–204.
- 18K. P. Walluscheck, G. Steinhoff, S. Kelm, A. Haverich, Improved endothelial cell attachment on ePTFE vascular grafts pretreated with synthetic RGD-containing peptides. Eur. J. Vasc. Endovasc. Surg. 1996; 12: 321–330.
- 19T. Tokiwa, J. Kamo, M. Kodama, T. Matsumura, Multilayer rat hepatocyte aggregates formed on expanded polyetetrafluoroethylene surface. Cytotechnology 1997; 25: 137–144.
- 20U. A. Stock, T. Skamoto, S. Hatsuoka et al., Patch Augmentation of the Pulmonary Artery using Autologous Cells and Biodegradable polymers. J. Thorac. Cardiovasc. Surg. 2000; 120: 1158–1168.
- 21F. Opitz F, K. Schenke-Layland, I. Degenkolbe et al., Tissue engineering of ovine aortic blood vessel substitutes using applied shear stress and enzymatically derived vascular smooth muscle cells. Ann. Biomed. Eng. 2004; 32: 212–222.
- 22R. A. Giordano, B. M. Wu, S. W. Borland et al., Mechanical properties of dense polylactic acid structures fabricated by three-dimensional printing. J. Biomater. Sci. Polym. Ed. 1996; 8: 63–75.
- 23A. Rothen-Weinhold, K. Besseghir, E. Vuaridel et al., Injection-molding versus extrusion as manufacturing technique for the preparation of biodegradable implants. Eur. J. Pharm. Biopharm. 1999; 48: 113–121.
- 24D. Yourtee, J. Emery, R. E. Smith, and B. Hodgson, Stereolithographic models of biopolymers. J. Mol. Graph Model 2000; 18: 26–28,59–60.
- 25U. A. Stock, D. Wiederschain, S. Kelly et al., Dynamic of matrix production and turnover in tissue engineered cardiovascular structures. J. Cell. Biochem. 2001; 81: 220–228.
10.1002/1097-4644(20010501)81:2<220::AID-JCB1037>3.0.CO;2-O CAS PubMed Web of Science® Google Scholar
- 26G. J. Wilson, D. W. Courtman, P. Klement, J. M. Lee, and H. Yeger, Acellular matrix: a biomaterials approach for coronary artery bypass and heart valve replacement. Ann. Thorac. Surg. 1995; 60: S353–S358.
- 27D. W. Courtman, C. A. Pereira, V. Kashef et al., Development of a pericardial acellular matrix biomaterial: biochemical and mechanical effects of cell extraction. J. Biomed. Mater. Res. 1994; 18: 655–666.
- 28A. Curtil, D. E. Pegg, and A. Wilson, Freeze drying of cardiac valves in preparation for cellular repopulation. Cryobiology 1997; 34: 13–22.
- 29S. Livesey, L. Boerboom, and C. Coleman, Decellularized porcine heart valves as templates for host cell repopulation. Abstract: 1998 Workshop on Prosthetic Heart Valves. Georgia Institute of Technology, Atlanta, GA.
- 30A. Bader, T. Herden, B. Giere et al., Tissue engineering of autologous heart valves using a physiologic matrix structure. Eur. J. Cell. Biol. 1997; 74: 8.
- 31A. Bader, T. Schilling, O. E. Teebken et al., Tissue engineering of heart valves–human endothelial cell seeding of detergent acellularized porcine valves. Eur. J. Cardiothorac. Surg. 1998; 14: 279–284.
- 32K. Schenke-Layland, F. Opitz, M. Gross et al., Complete dynamic repopulation of decellularized heart valves by application of defined physical signals – an in vitro study. Cardiovasc. Res. 2003; 60: 497–509.
- 33A. K. Moza, H. Mertsching, T. Herden, A. Bader, and A. Haverich, Heart valves from pigs and the porcine endogenous retrovirus: experimental and clinical data to assess the probability of porcine endogenous retrovirus infection in human subjects. J. Thorac. Cardiovasc. Surg. 2001; 121: 697–701.
- 34E. Rieder, M. T. Kasimir, G. Seebacher et al., Tissue engineering of heart valve conduit of porcine or human origin differ importantly in chemotactic activity for monocytic cells. Circulation 2005; 111: 2792–2797.
- 35M. T. Kasimir, G. Weigel, J. Sharma et al., The decellularized porcine heart valve matrix in tissue engineering: platelet adhesion and activation. Thromb. Haemost. 2005; 94: 562–567.
- 36P. Simon, M. T. Kasimir, G. Seebacher et al., Early failure of the tissue engineered porcine heart valve SYNERGRAFT in pediatric patients. Eur. J. Cardiothorac. Surg. 2003; 23: 1002–1006.
- 37K. Schenke-Layland, F. Opitz, I. Degenkolbe et al., Complete dynamic repopulation of decellularized heart valves by application of defined physical signals – an in vivo study. Cardiovasc. Res., in press.
- 38S. F. Badylak, R. Record, K. Lindberg, J. Hodde, and K. Park, Small intestinal submucosa: a substrate for in vitro cell growth. J. Biomater. Sci. Polym. 1998; 9: 863–878.
- 39S. L. Voytik-Harbin, A. O. Brightman, M. R. Kraine, B. Waisner, and S. F. Badylak, Identification of extractable growth factors from small intestinal submucosa. J. Cell. Biochem. 1997; 67: 478–491.
10.1002/(SICI)1097-4644(19971215)67:4<478::AID-JCB6>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 40R. G. Matheny, M. L. Hutchison, P. E. Dryden, M. D. Hiles, C. J. Shaar, Porcine small intestine submucosa as a pulmonary valve leaflet substitute. J. Heart Valve Dis. 2000; 9: 769–774.
- 41M. H. Wu, Y. Kouchi, Y. Onuki et al., Effects of differential shear stress on platelet aggregation, surface thrombosis, and endothelialization of bilateral carotid-femoral grafts in the dog. J. Vasc. Surg. 1995; 22: 382–392.
- 42S. Jockenhoevel, G. Zund, S. P. Hoerstrup et al., Fibrin gel - advantages of a new scaffold in cardiovascular tissue engineering. Eur. J. Cardiothorac. Surg. 2001; 19: 424–430.
- 43K. P. Walluscheck, G. Steinhoff, A. Haverich, Endothelial cell seeding of de-endothelialized human arteries: improvement by adhesion molecule induction and flow-seeding technology. Eur. J. Vasc. Endovasc. Surg. 1996; 12: 46–53.
- 44H. R. Laube, M. Matthäus, A new semi-automatic endothelial cell seeding technique for biological prosthetic heart valves. Int. J. Artif. Organs 2001; 23: 243–246.
- 45G. Steinhoff, U. Stock, H. Mertsching et al., Tissue engineering of heart valve on allogeneic acellular matrix conduits - in vivo restoration of valve tissue. Circulation 2000; 102: III50–III55.
- 46R. K. Li, Z. Q. Jia, R. D. Weisel et al., Survival and function of bioengineered cardiac grafts. Circulation 1999; 100: II63–II69.
- 47T. Sakai, R. K. Li, R. D. Weisel et al., The fate of a tissue-engineered cardiac graft in the right ventricular outflow tract of the rat. J. Thorac. Cardiovasc. Surg. 2001; 121: 932–942.
- 48T. Ozawa, D. A. Mickle, R. D. Weisel et al., Optimal biomaterial for creation of autologous cardiac grafts. Circulation 2002; 106: I176–I182.
- 49J. Leor, S. Aboulafia-Etzion, A. Dar et al., Bioengineered cardiac grafts: a new approach to repair the infarcted myocardium? Circulation 2000; 102: III56–III61.
- 50T. Eschenhagen, C. Fink, U. Remmers, H. Scholz, J. Wattchow, J. Weil et al., Three-dimensional reconstitution of embryonic cardiomyocytes in a collagen matrix: a new heart muscle model system. FASEB J. 1997; 11: 683–694.
- 51W. H. Zimmermann, M. Didie, G. H. Wasmeier et al., Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 2002; 106: I151–I157.
- 52T. Shimizu, M. Yamato, A. Kikuchi, and T. Okano, Two-dimensional manipulation of cardiac myocyte sheets utilizing temperature-responsive culture dishes augments the pulsatile amplitude. Tissue Eng. 2001; 7: 141–151.
- 53T. Shimizu, M. Yamato, Y. Isoi et al., Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature responsive cell culture surfaces. Circ. Res. 2002; 90: e40.
- 54T. Shimizu, M. Yamato, A. Kikuchi, T. Okano, Cell sheet engineering for myocardial tissue reconstruction. Biomaterials 2002; 24: 2309–2316.
- 55M. Shin, O. Ishii, T. Sueda, J. P. Vacanti, Contractile cardiac grafts using a novel nanofibrous mesh. Biomaterials 2004; 25: 3717–3723.
- 56H. Yoshimoto, Y. M. Shin, H. Terai, J. P. Vacanti, A biodegradable nano-fiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials 2003; 24: 2077–2082.
- 57O. Ishii, M. Shin, T. Sueda, and J. P. Vacanti, In vitro tissue engineering of a cardiac graft using a degradable scaffold with an extracellular matrix–like topography. J. Thorac. Cardiovasc. Surg. 2005; 130: 1358–1363.
- 58E. Luong-Van, L. Grondahl, K. N. Chua et al., Controlled release of heparin from poly(epsilon-caprolactone) electrospun fibers. Biomaterials 2005; Nov 20 [Epub ahead of print].
- 59A. K. Dogan, M. Gumusderelioglu, and E. Aksoz, Controlled release of EFG and bFGF from dextran hydrogels in vitro and vivo. J. Biomed. Mater. Res. B Appl. Biomater. 2005; 74(1): 504–510.
- 60C. Dai, B. Wang, H. Zhao, Microencapsulation peptide and protein drugs delivery system. Colloids Surf. V Biointerfaces 2005; 41(2-3): 117–120.