Surface Electromyography (EMG) Signal Processing
Dario Farina
Aalborg University, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg, Denmark
Search for more papers by this authorDario Farina
Aalborg University, Center for Sensory-Motor Interaction (SMI), Department of Health Science and Technology, Aalborg, Denmark
Search for more papers by this authorAbstract
An overview of the common methods for processing surface electromyographic (EMG) signals is provided. The extraction of information from the surface EMG is based on the analysis of global properties of the interference signal or on the decomposition of the signal into single-motor unit activities. Global analysis includes estimation of amplitude, power spectrum, average muscle fiber conduction velocity, and recurrence quantification. Single-motor unit analysis is based on spatial filtering and spatial sampling. These techniques are reviewed and their limitations outlined. Finally, open issues in surface EMG signal processing are discussed.
Bibliography
- 1J. V. Basmajian and C. J. DeLuca, Muscles Alive: Their Functions Revealed by Electromyography, 5th ed. Baltimore, MD: William and Wilkins, 1985.
- 2K. Roeleveld and D. F. Stegeman, What do we learn from motor unit action potentials in surface electromyography? Muscle Nerve 2002; 11: S92–S97.
- 3B. Jahne, Digital Image Processing: Concepts, Algorithms and Scientific Applications, Berlin: Springer-Verlag GmbH & Co. K, 2001.
- 4C. Disselhorst, J. Bahm, V. Ramaekers, A. Trachterna, and G. Rau, Non-invasive approach of motor unit recording during muscle contractions in humans. Eur. J. Appl. Physiol. 2000; 83: 144–150.
- 5H. Reucher, G. Rau, and J. Silny, Spatial filtering of noninvasive multielectrode EMG: part I—Introduction to measuring technique and applications. IEEE Trans. Biomed. Eng. 1987; 34: 98–105.
- 6H. Reucher, G. Rau, and J. Silny, Spatial filtering of noninvasive multielectrode EMG: part II—Filter performance in theory and modelling. IEEE Trans. Biomed. Eng. 1987; 34: 106–113.
- 7C. Disselhorst-Klug, J. Silny, and G. Rau, Improvement of spatial resolution in surface-EMG: a theoretical and experimental comparison of different spatial filters. IEEE Trans. Biomed. Eng. 1997; 44: 567–574.
- 8D. Farina and C. Cescon, Concentric ring electrode systems for non-invasive detection of single motor unit activity. IEEE Trans. Biomed. Eng. 2001; 48: 1326–1334.
- 9D. Farina, L. Arendt-Nielsen, R. Merletti, B. Indino, and T. Graven-Nielsen, Selectivity of spatial filters for surface EMG detection from the tibialis anterior muscle. IEEE Trans. Biomed. Eng. 2003; 50: 354–364.
- 10G. Rau and C. Disselhorst-Klug, Principles of high-spatial-resolution surface EMG (HSR-EMG ): single motor unit detection and application in the diagnosis of neuromuscular disorders. J. Electromyogr. Kinesiol. 1997; 7: 233–239.
- 11V. T. Inman, H. J. Ralston, J. B. Saunders, B. Feinstein, and E. W. Wright, Relation of human electromyogram to muscular tension. Electroenceph. Clin. Neurophys. 1952; 4: 187–194.
- 12E. A. Clancy and N. Hogan, Single site electromyograph amplitude estimation. IEEE Trans. Biomed. Eng. 1994; 41: 159–167.
- 13E. A. Clancy, E. L. Morin, and R. Merletti, Sampling, noise reduction and amplitude estimation issues in surface electromyography. J. Electromyogr. Kinesiol. 2002; 12: 1–16.
- 14J. S. Bendat and A. G. Piersol, Random Data: Analysis and Measurement Procedures, New York: John Wiley and Sons, 1971.
- 15R. N. Scott and P. A. Parker, Myoelectric prostheses: state of the art. J. Med. Eng. Technol. 1988; 12: 143–151.
- 16M. G. Benedetti, Muscle activation intervals and EMG envelope in clinical gait analysis. IEEE Eng. Med. Biol. Mag. 2001; 20: 33–34.
- 17R. Merletti, M. Knaflitz, and C. J. DeLuca, Myoelectric manifestations of fatigue in voluntary and electrically elicited contractions. J. Appl. Physiol. 1990; 68: 1657–1667.
- 18H. Piper, Electrophysiologie Menschlicher Muskeln, Berlin: Springer-Verlag, 1912.
- 19L. Lindstrom and R. Magnusson, Interpretation of myoelectric power spectra: a model and its applications. Proc. IEEE 1977; 65: 653–662.
- 20C. J. DeLuca, Physiology and mathematics of myoelectric signals. IEEE Trans. Biomed. Eng. 1979; 26: 313–325.
- 21P. J. Lago and N. B. Jones, Effect of motor unit firing time statistics on e.m.g. spectra. Med. Biol. Eng. Comput. 1977; 5: 648–655.
- 22L. Arendt-Nielsen and K. R. Mills, The relationship between mean power frequency of the EMG spectrum and muscle fibre conduction velocity. Electroencephalogr. Clin. Neurophysiol 1985; 60: 130–134.
- 23L. D. Gilmore and C. J. DeLuca, Muscle fatigue monitor (MFM): second generation. IEEE Trans. Biomed. Eng. 1985; 32: 75–78.
- 24F. B. Stulen and C. J. DeLuca, Muscle fatigue monitor: a noninvasive device for observing localized muscular fatigue. IEEE Trans. Biomed. Eng. 1982; 29: 760–768.
- 25R. Merletti, M. Knaflitz, and C. J. DeLuca, Electrically evoked myoelectric signals. Crit. Rev. Biomed. Eng. 1992; 19: 293–340.
- 26D. Farina and R. Merletti, Comparison of algorithms for estimation of EMG variables during voluntary isometric contractions. J. Electromyogr. Kinesiol. 2000; 10: 337–350.
- 27L. Sachs, Applied Statistics, New York: Springer-Verlag, 1982.
10.1007/978-1-4684-0123-3 Google Scholar
- 28P. Bonato, Recent advancements in the analysis of dynamic EMG data. IEEE Eng. Med. Biol. Mag. 2001; 20: 29–32.
- 29L. Cohen, Time-Frequency Analysis, New York: Prentice Hall, 1994.
- 30P. Bonato, G. Gagliati, and M. Knaflitz, Analysis of surface myoelectric signals recorded durino dynamic contractions. IEEE Eng. Med. Biol. Mag. 1996; 15: 102–111.
- 31H.J. Choi and W. J. Williams, Improved time-frequency representation of multicomponent signals using exponential kernels. IEEE Trans. Acoust. Speech. Sig. Proc. 1989; 37: 862–871.
- 32S. Karlsson, J. Yu, and M. Akay, Time-frequency analysis of myoelectric signals during dynamic contractions: a comparative study. IEEE Trans. Biomed. Eng. 2000; 47: 228–238.
- 33A. M. Sayeed and D. L. Jones, Optimal kernels for nonstationary spectral estimation. IEEE Trans. Sig. Proc. 1995; 43: 478–491.
- 34B. Bigland-Ritchie, E. F. Donovan, and C. S. Roussos, Conduction velocity and EMG power spectrum changes in fatigue of sustained maximal efforts. J. Appl. Physiol. 1981; 51: 1300–1305.
- 35C. L. Webber, M. A. Schmidt, and S. M. Walsh, Influence of isometric loading on biceps EMG dynamics as assessed by linear and non linear tools. J. Appl. Physiol. 1995; 78: 814–822.
- 36H. Nieminen and E. P. Takala, Evidence of deterministic chaos in the myoelectric signal. Electromyogr. Clin. Neurophysiol. 1996; 36: 49–58.
- 37J. P. Eckmann, S. O. Kamphorst, and D. Ruelle, Recurrence plots of dynamical systems. Europhys. Lett. 1987; 4: 973–977.
- 38D. Farina, L. Fattorini, F. Felici, and G. Filligoi, Nonlinear surface EMG analysis to detect changes of motor unit conduction velocity and synchronization. J. Appl. Physiol. 2002; 93: 1753–1763.
- 39F. Felici, A. Rosponi, P. Sbriccoli, G. C. Filligoi, L. Fattorini, and M. Marchetti, Linear and non-linear analysis of surface electromyograms in weightlifters. Eur. J. Appl. Physiol. 2001; 84: 337–342.
- 40F. Felici, A. Rosponi, P. Sbriccoli, M. Scarcia, I. Bazzucchi, and M. Iannattone, Effect of human exposure to altitude on muscle endurance during isometric contractions. Eur. J. Appl. Physiol. 2001; 85: 507–512.
- 41Y. Liu, M. Kankaanpaa, J. P. Zbilut, and C. L. Webber, Jr., EMG recurrence quantifications in dynamic exercise. Biol. Cybern. 2004; 90: 337–348.
- 42R. Merletti, D. Farina, and M. Gazzoni, The linear electrode array: a useful tool with many applications. J. Electromyogr. Kinesiol. 2003; 13: 37–47.
- 43M. J. Zwarts and D. F. Stegeman, Multichannel surface EMG: basic aspects and clinical utility. Muscle Nerve 2003; 28: 1–17.
- 44B. U. Kleine, N. P. Schumann, D. F. Stegeman, and H. C. Scholle, Surface EMG mapping of the human trapezius muscle: the topography of monopolar and bipolar surface EMG amplitude and spectrum parameters at varied forces and in fatigue. Clin. Neurophysiol. 2000; 111: 686–693.
- 45D. F. Stegeman, M. J. Zwarts, C. Anders, and T. Hashimoto, Multi-channel surface EMG in clinical neurophysiology. Clin. Neurophysiol. 2000; 53: 155–162.
- 46G. Drost, J. H. Blok, D. F. Stegeman, J. P. van Dijk, B. G. van Engelen, and M. J. Zwarts, Propagation disturbance of motor unit action potentials during transient paresis in generalized myotonia: a high-density surface EMG study. Brain 2001; 124: 352–360.
- 47G. Drost, D. F. Stegeman, M. L. Schillings, H. L. Horemans, H. M. Janssen, M. Massa, F. Nollet, and M. J. Zwarts, Motor unit characteristics in healthy subjects and those with postpoliomyelitis syndrome: a high-density surface EMG study. Muscle Nerve 2004; 30: 269–276.
- 48G. Drost, J. P. Van Dijk, D. F. Stegeman, B. G. Van Engelen, and M. J. Zwarts, Maintaining constant voluntary force in generalized myotonia despite muscle membrane disturbances: insights from a high-density surface EMG study. J. Clin. Neurophysiol. 2004; 21: 114–123.
- 49W. H. Linssen, D. F. Stegeman, E. M. Joosten, H. J. Merks, H. J. ter Laak, R. A. Binkhorst, and S. L. Notermans, Force and fatigue in human type I muscle fibres. A surface EMG study in patients with congenital myopathy and type I fibre predominance. Brain 1991; 114: 2123–2132.
- 50J. H. van der Hoeven, M. J. Zwarts, and T. W. van Weerden, Muscle fiber conduction velocity in amyotrophic lateral sclerosis and traumatic lesions of the plexus brachialis. Electroencephalogr. Clin. Neurophysiol. 1993; 89: 304–310.
- 51J.H. van der Hoeven, T. P. Links, M. J. Zwarts, and T. W. van Weerden, Muscle fiber conduction velocity in the diagnosis of familial hypokalemic periodic paralysis–invasive versus surface determination. Muscle Nerve 1994; 17: 898–905.
- 52M. J. Zwarts, G. Drost, and D. F. Stegeman, Recent progress in the diagnostic use of surface EMG for neurological diseases. J. Electromyogr. Kinesiol. 2000; 10: 287–291.
- 53L. Arendt-Nielsen, K. R. Mills, and A. Forster, Changes in muscle fiber conduction velocity, mean power frequency, and mean EMG voltage during prolonged submaximal contractions. Muscle Nerve 1989; 12: 493–497.
- 54T. Sadoyama, T. Masuda, H. Miyata, and S. Katsuta, Fibre conduction velocity and fibre composition in human vastus lateralis. Eur. J. Appl. Physiol. Occup. Physiol. 1988; 57: 767–771.
- 55L. Arendt-Nielsen and M. Zwarts, Measurement of muscle fiber conduction velocity in humans: techniques and applications. J. Clin. Neurophysiol. 1989; 6: 173–190.
- 56T. Masuda and T. Sadoyama, Skeletal muscles from which the propagation of motor unit action potentials is detectable with a surface electrode array. Electroencephalogr. Clin. Neurophysiol. 1987; 67: 421–427.
- 57D. Farina, L. Mesin, S. Martina, and R. Merletti, A surface EMG generation model with multi-layer cylindrical description of the volume conductor. IEEE Trans. Biomed. Eng. 2004; 51: 415–426.
- 58D. Farina, L. Mesin, and S. Martina, Advances in surface EMG signal simulation with analytical and numerical descriptions of the volume conductor. Med. Biol. Eng. Comput. 2004; 42: 467–476.
- 59K. C. McGill and L. J. Dorfman, High-resolution alignment of sampled waveforms. IEEE Trans. Biomed. Eng. 1984; 31: 462–468.
- 60M. Naeije and H. Zorn, Estimation of the action potential conduction velocity in human skeletal muscle using the surface EMG cross-correlation technique. Electromyogr. Clin. Neurophysiol. 1983; 23: 73–80.
- 61I. W. Hunter, R. E. Kearney, and L. A. Jones, Estimation of the conduction velocity of muscle action potentials using phase and impulse response function techniques. Med. Biol. Eng. Comput. 1987; 25: 121–126.
- 62D. Farina and R. Merletti, Methods for estimating muscle fibre conduction velocity from surface electromyographic signals. Med. Biol. Eng. Comput. 2004; 42: 432–445.
- 63L. Lindstrom, R. Magnusson, and I. Petersén, Muscular fatigue and action potential conduction velocity changes studied with frequency analysis of EMG signals. Electromyography 1970; 10: 341–356.
- 64F. B. Stulen and C. J. DeLuca, Frequency parameters of the myoelectric signal as a measure of muscle conduction velocity. IEEE Trans. Biomed. Eng. 1981; 28: 515–523.
- 65L. R. Lo Conte, R. Merletti, and G. V. Sandri, Hermite expansions of compact support waveforms: applications to myoelectric signals. IEEE Trans. Biomed. Eng 1994; 41: 1147–1459.
- 66W. Muhammad, O. Meste, H. Rix, and D. Farina, A pseudojoint estimation of time delay and scale factor for M-wave analysis. IEEE Trans. Biomed. Eng. 2003; 50: 459–468.
- 67L. Lindstrom, R. Magnusson, and I. Petersén, The “dip phenomenon” in power spectra of EMG signals. Electroencephalogr. Clin. Neurophysiol. 1971; 30: 259–260.
- 68E. Spinelli, C. J. Felice, M. Mayosky, J. C. Politti, and M. E. Valentinuzzi, Propagation velocity measurement: autocorrelation technique applied to the electromyogram. Med. Biol. Eng. Comput. 2001; 39: 590–593.
- 69P.A. Lynn, Direct on-line estimation of muscle fiber conduction velocity by surface electromyography. IEEE Trans. Biomed. Eng. 1979; 26: 564–571.
- 70A. Gydikov, Spreading of potentials along the muscle, investigated by averaging of the summated EMG. Electromyogr. Clin. Neurophysiol. 1981; 21: 525–538.
- 71J. Y. Hogrel and J. Duchene, Motor unit conduction velocity distribution estimation: assessment of two short-term processing methods. Med. Biol. Eng. Comput. 2002; 40: 253–259.
- 72H. Rix and J. P. Malengé, Detecting small variation in shape. IEEE Trans. Syst. Man Cybern. 1980; 10: 90–96.
- 73P. A. Parker and R. N. Scott, Statistics of the myoelectric signal from monopolar and bipolar electrodes. Med. Biol. Eng. 1973; 11: 591–596.
- 74D. Farina and R. Merletti, A novel approach for estimating muscle fiber conduction velocity by spatial and temporal filtering of surface EMG signals. IEEE Trans. Biomed. Eng. 2003; 50: 1340–1351.
- 75J. Schneider, G. Rau, and J. Silny, A noninvasive EMG technique for investigating the excitation propagation in single motor units. Electromyogr. Clin. Neurophysiol 1989; 29: 273–280.
- 76D. Farina, E. Fortunato, and R. Merletti, Noninvasive estimation of motor unit conduction velocity distribution using linear electrode arrays. IEEE Trans. Biomed. Eng. 2000; 47: 380–388.
- 77D. Farina, W. Muhammad, E. Fortunato, O. Meste, R. Merletti, and H. Rix, Estimation of single motor unit conduction velocity from surface electromyogram signals detected with linear electrode arrays. Med. Biol. Eng. Comput. 2001; 39: 225–236.
- 78D. Farina, L. Arendt-Nielsen, R. Merletti, T. Graven-Nielsen, Assessment of single motor unit conduction velocity during sustained contractions of the tibialis anterior muscle with advanced spike triggered averaging. J. Neurosci. Meth. 2002; 115: 1–12.
- 79W. Muhammad, O. Meste, and H. Rix, Comparison of single and multiple time delay estimators: application to muscle fiber conduction velocity estimation. Signal Processing 2002; 82: 925–940.
- 80D. Farina, M. Pozzo, E. Merlo, A. Bottin, and R. Merletti, Assessment of muscle fiber conduction velocity from surface EMG signals during fatiguing dynamic contractions. IEEE Trans. Biomed. Eng. 2004; 51: 1383–1393.
- 81D. Farina and R. Merletti, Estimation of average muscle fiber conduction velocity from two-dimensional surface EMG recordings. J. Neurosci. Meth. 2004; 134: 199–208.
- 82C. J. DeLuca and R. Merletti, Surface myoelectric signal cross-talk among muscles of the leg. Electroencephalogr. Clin. Neurophysiol. 1988; 69: 568–575.
- 83D. Farina, R. Merletti, B. Indino, M. Nazzaro, and M. Pozzo, Surface EMG crosstalk between knee extensor muscles: experimental and model results. Muscle Nerve 2002; 26: 681–695.
- 84Y. Blanc, P. Burkhard, U. Dimanico, M. Coletti Moja, A. Merlo, and M. Nazzaro, Evaluation de la diaphonie (crosstalk) intermusculaire au cours de la contraction musculaire volontaire. Proc. XII Journées Francophones d’ElectroNeuroMyogr, 2000: 39.
- 85N. A. Dimitrova, G. V. Dimitrov, and O. A. Nikitin, Neither high-pass filtering nor mathematical differentiation of the EMG signals can considerably reduce cross-talk. J. Electromyogr. Kinesiol. 2002; 12: 235–246.
- 86R. Merletti, Crosstalk in surface EMG: theoretical predictions and experimental observations. In: H. J. Hermens and B. Freriks eds., The State of the Art on Sensors and Sensor Placement Procedures for Surface Electromyography: A Proposal for Sensor Placement Procedures Enschede, The Netherlands: Roessingh Research and Development, 1997, pp. 101–108.
- 87D. A. Winter, A. J. Fuglevand, and S. E. Archer, Crosstalk in surface electromyography: theoretical and practical estimates. J. Electromyogr. Kinesiol. 1993; 4: 15–26.
- 88Y. Blanc, M. Coletti Moja, U. Dimanico, A. Merlo, and M. Nazzaro, Crosstalk evaluation during voluntary muscle contractions. In: H. J. Hermens and B. Freriks, eds., Future Applications of Surface Electromyography. Enschede, The Netherlands: Roessingh Research and Development, 1999, pp. 12–16.
- 89C. Disselhorst-Klug, Y. Blanc, and G. Rau, Examination of the reduction of crosstalk between the leg muscles by spatial filtering techniques. In: H. J. Hermens and B. Freriks, eds., Future Applications of Surface Electromyography Enschede, The Netherlands: Roessingh Research and Development, 1999, pp. 38–40.
- 90T. J. Koh and M. D. Grabiner, Cross talk in surface electromyograms of human hamstring muscles. J. Orthop. Res. 1992; 10: 701–709.
- 91T. J. Koh and M. D. Grabiner, Evaluation of methods to minimize cross talk in surface electromyography. J. Biomech. 1993; 26(Suppl 1): 151–157.
- 92J. W. Morrenhof and H. J. Abbink, Cross-correlation and cross-talk in surface electromyography. Electromyogr. Clin. Neurophysiol. 1985; 25: 73–79.
- 93J. Perry, C. Schmidt Easterday, and D. J. Antonelli, Surface versus intramuscular electrodes for electromyography of superficial and deep muscles. Phys. Ther. 1981; 61: 7–15.
- 94M. Solomonow, R. Baratta, M. Bernardi, B. Zhou, Y. Lu, M. Zhu, and S. Acierno, Surface and wire EMG crosstalk in neighbouring muscles. J. Electromyogr. Kinesiol. 1994; 4: 131–142.
- 95J. G. van Dijk and J. P. van Vugt, The reduction of crosstalk (from a clinical point of view). In: H. J. Hermens and B. Freriks, eds., Future Applications of Surface Electromyography. Enschede, The Netherlands: Roessingh Research and Development, 1999, pp. 110–113.
- 96J. P. van Vugt and J. G. van Dijk, A convenient method to reduce crosstalk in surface EMG. Clin. Neurophysiol. 2001; 112: 583–592.
- 97M. M. Lowery, N. S. Stoykov, and T. A. Kuiken, A simulation study to examine the use of cross-correlation as an estimate of surface EMG cross talk. J. Appl. Physiol. 2003; 94: 1324–1334.
- 98D. Farina, C. Cescon, and R. Merletti, Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol. Cybern. 2002; 86: 445–456.
- 99D. Farina, C. Févotte, C. Doncarli, and R. Merletti, Blind separation of linear instantaneous mixtures of non-stationary surface myoelectric signals. IEEE Trans. Biomed. Eng. 2004; 51: 1555–1567.
- 100J.F. Cardoso, Blind signal separation: statistical principles. Proc. IEEE 1998; 9: 2009–2025.
- 101A. Belouchrani, K. Abed-Meraim, J. F. Cardoso, and E. Moulines, A blind source separation technique using second-order statistics. IEEE Trans. Signal Proc. 1997; 45: 434–443.
- 102A. Belouchrani and M. G. Amin, Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Proc. 1998; 46: 2888–2897.
- 103R. S. LeFever and C. J. DeLuca, A procedure for decomposing the myoelectric signal into its constituent action potentials–Part I: technique, theory, and implementation. IEEE Trans. Biomed. Eng. 1982; 29: 149–157.
- 104B. U. Kleine, J. H. Blok, R. Oostenveld, P. Praamstra, and D. F. Stegeman, Magnetic stimulation-induced modulations of motor unit firings extracted from multi-channel surface EMG. Muscle Nerve 2000; 23: 1005–1015.
- 105M. Gazzoni, D. Farina, and R. Merletti, A new method for the extraction and classification of single motor unit action potentials from surface EMG signals. J. Neurosci. Meth. 2004; 136: 165–177.
- 106A. Holobar and D. Zazula, Correlation-based decomposition of surface electromyograms at low contraction forces. Med. Biol. Eng. Comput. 2004; 42: 487–495.
- 107A. Holobar and D. Zazula, A new approach for blind source separation of convolutive mixtures of pulse trains. Proc. BSI02, Como, Italy, 2002: 163–166.