Rehabilitation Biomechanics
Alicia M. Koontz
VA Pittsburgh HealthCare System, Human Engineering Research Laboratories, Pittsburgh, Pennsylvania
University of Pittsburgh, Department of Rehabilitation Science and Technology, Pittsburgh, Pennsylvania
Search for more papers by this authorJean L. McCrory
University of Pittsburgh, Department of Health and Physical Activity, Pittsburgh, Pennsylvania
Search for more papers by this authorRakié Cham
University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania
Search for more papers by this authorYusheng Yang
VA Pittsburgh HealthCare System, Human Engineering Research Laboratories, Pittsburgh, Pennsylvania
University of Pittsburgh, Department of Rehabilitation Science and Technology, Pittsburgh, Pennsylvania
Search for more papers by this authorMatthew Wilkinson
VA Pittsburgh HealthCare System, Human Engineering Research Laboratories, Pittsburgh, Pennsylvania
Search for more papers by this authorAlicia M. Koontz
VA Pittsburgh HealthCare System, Human Engineering Research Laboratories, Pittsburgh, Pennsylvania
University of Pittsburgh, Department of Rehabilitation Science and Technology, Pittsburgh, Pennsylvania
Search for more papers by this authorJean L. McCrory
University of Pittsburgh, Department of Health and Physical Activity, Pittsburgh, Pennsylvania
Search for more papers by this authorRakié Cham
University of Pittsburgh, Department of Bioengineering, Pittsburgh, Pennsylvania
Search for more papers by this authorYusheng Yang
VA Pittsburgh HealthCare System, Human Engineering Research Laboratories, Pittsburgh, Pennsylvania
University of Pittsburgh, Department of Rehabilitation Science and Technology, Pittsburgh, Pennsylvania
Search for more papers by this authorMatthew Wilkinson
VA Pittsburgh HealthCare System, Human Engineering Research Laboratories, Pittsburgh, Pennsylvania
Search for more papers by this authorAbstract
Rehabilitation biomechanics is a field of study that addresses the impact of disability and the effectiveness of rehabilitation therapies and interventions on human performance. Engineering and physics principles are applied to evaluate and analyze body movement and manipulation. This article describes biomechanical evaluation as a clinical and research tool for assessing the effect of disability on task performance, evaluating the risk of injury, and optimizing the fit of an assistive device to an individual. Methods and tools for measuring human kinematics, kinetics, energy expenditure, and muscle activity in rehabilitation applications are presented in addition to the use of biomechanical models and computer simulation as tools to determine parameters that cannot be measured with current technology or are difficult to measure directly. An introduction to gait analysis is reviewed with specific examples of cases where biomechanical analyses have led to new knowledge and improvements in clinical practices. Lastly, future trends and needs in rehabilitation biomechanics applications and research are discussed in relation to the increasing age of the population and persons aging with a disability.
Bibliography
- 1L. Gwinn, J. Wilckens, and E. McDevitt, The relative incidence of anterior cruciate ligament injury in men and women at the United States Naval Academy. Am. J. Sports Med. 2000; 28: 98–102.
- 2J. D. Chappell, B. Yu, D. T. Kirkendall, and W. E. Garrett, A comparison of knee kinetics between male and female recreational athletes in stop-jump tasks. Am. J. Sports Med. 2002; 30: 261–267.
- 3S. M. Lephart, C. M. Ferris, B. L. Riemann, J. Myers, and F. H. Fu, Gender differences in strength and lower extremity kinematics during landing. Clin. Orthopaed. Related Res. 2002; 401: 162–169.
- 4R. A. Malinzak, S. M. Colby, D. T. Kirkendall, B. Yu, and W. E. Garrett, A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clin. Biomechan. 2001; 16: 438–445.
- 5B. L. Zeller, J. L. McCrory, W. B. Kibler, and T. L. Uhl, Differences in kinematics and electromyographic activity between men and women during the single-legged squat. Am. J. Sports Med. 2003; 31: 449–456.
- 6J. M. Jakicic, C. Winters, K. Lagally, J. Ho, R. J. Robertson, and R. R. Wing, The accuracy of the TriTrac-R3D accelerometer to estimate energy expenditure. Med. Sci. Sports Exerc. 1999; 31: 747–754.
- 7M. A. Lafortune, Three-dimensional acceleration of the tibia during walking and running. J. Biomech. 1991; 24: 877–886.
- 8R. E. Mayagoitia, J. H. Waarsing, A. Sanchez-Pineda, and P. H. Veltnik, Walking balance study using a triaxial accelerometer. 2nd International Conference on Methods and Techniques in Behavioral Research, Groningen, The Netherlands, 1998: 18–21.
- 9R. N. Hinrichs and S. P. McLean, NLT and extrapolated DLT:3-D cinematography alternatives for enlarging the volume of calibration. J. Biomech. 1995; 28: 1219–1223.
- 10A. R. Karduna, P. McClure, L. A. Michener, and B. Sennett, Three-dimensional measurements of scapular kinematics: Reliability and validity of a novel technique. Proceedings of the North American Congress on Biomechanics, Waterloo, Ontario, Canada, August 14–18, 1998.
- 11T. P. Andriacchi, E. J. Alexander, M. K. Toney, C. Dyrby, and J. Sum, A point cluster method for in vivo motion analysis: applied to a study of knee kinematics. J. Biomech. Eng. 1998; 120: 743–749.
- 12E. J. Alexander and T. P. Andriacchi, Correcting for deformation in skin-based marker systems. J. Biomech. 2001; 34: 355–361.
- 13E. Volle, Functional magnetic resonance imaging—video diagnosis of soft-tissue trauma to the craniocervical joints and ligaments. Int. Tinnitus J 2000; 6: 134–139.
- 14A. S. Arnold, S. Salinas, D. J. Asakawa, and S. L. Delp, Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity. Comput. Aided Surg. 2000; 5: 108–119.
- 15M. J. Jorgensen, W. S. Marras, K. P. Granata, and J. W. Wiand, MRI-derived moment-arms of the female and male spine loading muscles. Clin. Biomechan 2001; 16(3): 182–193.
- 16E. Erel, A. Dilley, J. Greening, V. Morris, B. Cohen, and B. Lynn, Longitudinal sliding of the median nerve in patients with carpal tunnel syndrome. J. Hand Surg. [Br.] 2003; 28: 439–443.
- 17C. W. Pfirrmann, M. Huser, G. Szekely, J. Hodler, and C. Gerber, Evaluation of complex joint motion with computer-based analysis of fluoroscopic sequences. Invest. Radiol. 2002; 37: 73–76.
- 18P. Buchler, N. A. Ramaniraka, L. R. Rakotomanana, J. P. Iannotti, and A. Farron, A finite element model of the shoulder: application to the comparison of normal and osteoarthritic joints. Clin. Biomech 2002; 17: 630–639.
- 19R. A. Cooper, T. T. Thorman, R. Cooper, M. J. Dvorznak, S. G. Fitzgerald, W. Ammer, G. Song-Feng, and M. L. Boninger, Driving characteristics of electric powered wheelchair users: How far, fast, and often do people drive. Arch. Phys. Med. Rehabil. 2002; 83(2): 250–255.
- 20D. P. VanSickle, R. A. Cooper, and R. N. Robertson. SMARTwheel: Development of a digital force and moment sensing pushrim. Proceedings 18th Annual RESNA Conference, Vancouver, BC, Canada, June 9–14, 1995: 352–354.
- 21Y. T. Wang, D. Beale, and M. Moeizadeh, An electronic device to measure drive and recovery phases during wheelchair propulsion: A technical note. J. Rehabil. Res. Dev. 1996; 33: 305–310.
- 22M. S. Redfern, R. Cham, K. Gielo-Perczak, R. Grönqvist, M. Hirvonen, H. Lanshammar, M. I. Marpet, and Y. C. Pai, Biomechanics of slips. Ergonomics 2001; 44: 1138–1166.
- 23E. T. Hsaio, K. Katdera, J. Matsona, W. Liua, L. A. Lipsitz, and J. J. Collinsa, Predicting the dynamic postural control response from quiet-stance behavior in elderly adults. J. Biomech. 2003; 36: 1327–1333.
- 24R. A. Geiger, J. B. Allen, J. O’Keefe, and R. R. Hicks, Balance and mobility following stroke: Effects of physical therapy interventions with and without biofeedback/forceplate training. Phys. Ther. 2001; 81: 995–1005.
- 25H. Sadeghi, F. Prince, K. F. Zabjek, and H. Labelle, Simultaneous, bilateral, and three-dimensional gait analysis of elderly people without impairments. Am. J. Phys. Med. Rehabil. 2004; 83: 112–123.
- 26T. Schmalz, S. Blumentritt, and R. Jarasch, Energy expenditure and biomechanical characteristics of lower limb amputee gait: The influence of prosthetic alignment and different prosthetic components. Gait Posture. 2002; 16: 255–263.
- 27B. J. Hafner, J. E. Sanders, J. M. Czerniecki, and J. Fergason, Transtibial energy-storage-and-return prosthetic devices: A review of energy concepts and a proposed nomenclature. J. Rehabil. Res. Dev. 2002; 39: 1–11.
- 28S. Hesse, C. Werner, T. Paul, A. Bardeleben, and J. Chaler, Influence of walking speed on lower limb muscle activity and energy consumption during treadmill walking of hemiparetic patients. Arch. Phys. Med. Rehabil. 2001; 82: 1547–1550.
- 29C. A. McGibbon, M. S. Puniello, and D. E. Krebs, Mechanical energy transfer during gait in relation to strength impairment and pathology in elderly women. Clin. Biomech. 2001; 16: 324–333.
- 30D. A. Winter, Biomechanics and Motor Control of Human Movement, New York: John Wiley & Sons, 1990.
- 31J. M. Donelan, R. Kram, and A. D. Kuo, Simultaneous positive and negative external mechanical work in human walking. J. Biomech 2002; 35: 117–124.
- 32T. R. Pitzen, D. Matthis, D. D. Barbier, and W. I. Steudel, Initial stability of cervical spine fixation: Predictive value of a finite element model. Technical note. J. Neurosurg. 2002; 97: 128–134.
- 33D. Perie, C. E. Aubin, M. Lacroix, Y. Lafon, J. Dansereau, and H. Labelle, Personalized biomechanical modeling of Boston brace treatment in idiopathic scoliosis. Stud. Health Technol. Inform. 2002; 91: 393–396.
- 34M. Zhang, M. Lord, A. R. Turner-Smith, and V. C. Roberts, Development of a non-linear finite element modelling of the below-knee prosthetic socket interface. Med. Eng. Phys. 1995; 17: 559–566.
- 35S. G. Zachariah and J. E. Sanders, Interface mechanics in lower-limb external prosthetics: A review of finite element models. IEEE Trans. Rehabil. Eng. 1996; 4: 288–302.
- 36R. A. Robergs and S. Roberts, Fundamental Principles of Exercise Physiology: For Fitness, Performance, and Health, Boston, MA: McGraw-Hill, 2000.
- 37S. Bursztein, Energy Metabolism, Indirect Calorimetry, and Nutrition, Baltimore, MD: Williams & Wilkins, 1989.
- 38M. J. Callaghan, C. J. McCarthy, and J. A. Oldham, Electromyographic fatigue characteristics of the quadriceps in patellofemoral pain syndrome. Man. Ther. 2001; 6: 27–33.
- 39R. Contini, R. Drillis, and M. Bluestein, Determination of body-segment parameters. Human Factors 1963; 5: 493–504.
- 40E. P. Hanavan, A mathematical model of the human body. Wright-Patterson Air Force Base, AMRL-TR-64-102, 1964.
- 41R. A. Cooper, Rehabilitation Engineering Applied to Mobility and Manipulation, Philadelphia, PA: Institute of Physics Publishing, 1995.
10.1887/0750303433 Google Scholar
- 42D. Jin, R. Zhang, H. O. Dimo, R. Wang, and J. Zhang, Kinematic and dynamic performance of prosthetic knee joint using six-bar mechanism. J. Rehabil. Res. Dev. 2003; 40: 39–48.
- 43J. P. Hanson, M. S. Redfern, and M. Mazumdar, Predicting slips and falls considering required and available friction. Ergonomics 1999; 42: 1619–1633.
- 44P. J. Perkins, Measurement of slip between the shoe and ground during walking. ASTM-Special-Technical-Publication, American Society for Testing and Materials. ASTM STP 649, Philadelphia, PA, 1978: 71–87.
- 45L. Strandberg and H. Lanshammar, The dynamics of slipping accidents. J. Occupational Accidents 1981; 3: 153–162.
- 46T. P. Rhoades and J. M. Miller. Measurement and comparison of “required” versus “available” slip resistance. Proceedings of the Human factors Association of Canada, 1988: 137–140.
- 47F. L. Buczek and S. A. Banks, High-resolution force plate analysis of utilized slip resistance in human walking. J. Test. Eval. 1996; 24: 353–358.
- 48F. L. Buczek, P. R. Cavanagh, B. T. Kulakowski, and P. Pradhan, Slip resistance needs of the mobility disabled during level and grade walking. ASTM-Special-Technical-Publication, American Society for Testing and Materials. ASTM STP 1103, Philadelphia, PA, 1990: 39–54.
- 49E. J. McVay and M. S. Redfern, Rampway safety - Foot forces as a function of rampway angle. Am. Indust. Hygiene Assoc. J. 1994; 55: 626–634.
- 50M. S. Redfern and J. DiPasquale, Biomechanics of descending ramps. Gait and Posture 1997; 6: 119–125.
- 51R. Myung and J. L. Smith, The effect of load carrying and floor contaminants on slip and fall parameters. Ergonomics 1997; 40: 235–246.
- 52R. Cham and M. S. Redfern, Lower extremity corrective reactions to slip events. J. Biomech. 2001; 34: 1439–1445.
- 53B. E. Maki, M. A. Edmonstone, and W. E. McIlroy, Age-related differences in laterally directed compensatory stepping behavior. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 2000; 55: M270–M277.
- 54P-F. Tang and M. H. Woollacott, Inefficient postural responses to unexpected slips during walking in older adults. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 1998; 53: M471–M480.
- 55P-F. Tang and M. H. Woollacott, Phase-dependent modulation of proximal and distal postural responses to slips in young and older adults. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 1999; 54: M89–M102.
- 56M. J. Pavol, T. M. Owings, K. T. Foley, and M. D. Grabiner, Gait characteristics as risk factors for falling from trips induced in older adults. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 1999; 54: M583–M590.
- 57M. J. Pavol, T. M. Owings, and M. D. Grabiner, The sex and age of older adults influence the outcome of induced trips. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 1999; 54: M103–M108.
- 58D. G. Thelen, M. Muriuki, J. James, A. B. Schultz, J. A. Ashton-Miller, and N. B. Alexander, Muscle activities used by young and old adults when stepping to regain balance during a forward fall. J. Electromyogr. Kinesiol 2000; 10: 93–101.
- 59D. G. Thelen, L. A. Wojcik, A. B. Schultz, J. A. Ashton-Miller, and N. B. Alexander, Age differences in using a rapid step to regain balance during a forward fall. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 1997; 52: M8–M13.
- 60L. A. Wojcik, D. G. Thelen, A. B. Schultz, J. A. Ashton-Miller, and N. B. Alexander, Age and gender differences in peak lower extremity joint torques and ranges of motion used during single-step balance recovery from a forward fall. J. Biomech. 2001; 34: 67–73.
- 61L. A. Wojcik, D. G. Thelen, A. B. Schultz, J. A. Ashton-Miller, and N. B. Alexander, Age and gender differences in single-step recovery from a forward fall. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 1999; 54: M44–M50.
- 62C. Smeesters, W. C. Hayes, and T. A. McMahon, The threshold trip duration for which recovery is no longer possible is associated with strength and reaction time. J. Biomech. 2001; 34: 589–595.
- 63A. D. Kuo and F. E. Zajac, A biomechanical analysis of muscle strength as a limiting factor in standing posture. J. Biomech 1993; 26: 137–150.
- 64D. G. Thelen, A. B. Schultz, N. B. Alexander, and J. A. Ashton-Miller, Effects of age on rapid ankle torque development. J. Gerontol. Series A, Biolog. Sci. Med. Sci. 1996; 51: M226–M232.
- 65M. T. Koh and L. S. Jennings, Dynamic optimization: Inverse analysis for the Yurchenko layout vault in women's artistic gymnastics. J. Biomech. 2003; 36: 1177–1183.
- 66B. R. Bloem, Y. A. Grimbergen, M. Cramer, M. Willemsen, and A. H. Zwinderman, Prospective assessment of falls in Parkinson's disease. J. Neurol. 2001; 248: 950–958.
- 67C. Maurer, T. Mergner, J. Xie, M. Faist, P. Pollak, and C. H. Lucking, Effect of chronic bilateral subthalamic nucleus (STN) stimulation on postural control in Parkinson's disease. Brain 2003; 126: 1146–1163.
- 68L. Rocchi, L. Chiari, and F. B. Horak, Effects of deep brain stimulation and levodopa on postural sway in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 2002; 73: 267–274.
- 69H. M. Bronte-Stewart, A. Y. Minn, K. Rodrigues, E. L. Buckley, and L. M. Nashner, Postural instability in idiopathic Parkinson's disease: The role of medication and unilateral pallidotomy. Brain 2002; 125: 2100–2114.
- 70A. M. Bronstein, J. D. Hood, M. A. Gresty, and C. Panagi, Visual control of balance in cerebellar and parkinsonian syndromes. Brain 1990; 113: 767–779.
- 71A. L. Smiley-Oyen, H. Y. Cheng, L. D. Latt, and M. S. Redfern, Adaptation of vibration-induced postural sway in individuals with Parkinson's disease. Gait Posture 2002; 16: 188–197.
- 72F. B. Horak, J. G. Nutt, and L. M. Nashner, Postural inflexibility in parkinsonian subjects. J. Neurolog. Sci 1992; 111: 46–58.
- 73M. E. Morris, F. Huxham, J. McGinley, K. Dodd, and R. Iansek, The biomechanics and motor control of gait in Parkinson disease. Clin. Biomech. 2001; 16: 459–470.
- 74Y. Jian, D. A. Winter, M. G. Ishac, and L. A. Gilchrist, Trajectory of the body COG and COP during initiation and termination of gait. Gait Posture 1993; 1: 9–22.
10.1016/0966-6362(93)90038-3 Google Scholar
- 75S. E. Halliday, D. A. Winter, J. S. Frank, A. E. Patla, and F. Prince, The initiation of gait in young, elderly, and Parkinson's disease subjects. Gait Posture 1998; 8: 8–14.
- 76A. Burleigh-Jacobs, F. B. Horak, J. G. Nutt, and J. A. Obeso, Step initiation in Parkinson's disease: Influence of levodopa and external sensory triggers. Movement Disord. 1997; 12: 206–215.
- 77N. Giladi, M. P. McDermott, S. Fahn, S. Przedborski, J. Jankovic, M. Stern, and C. Tanner, Freezing of gait in PD: Prospective assessment in the DATATOP cohort. Neurology 2001; 56: 1712–1721.
- 78N. Giladi, T. A. Treves, E. S. Simon, H. Shabtai, Y. Orlov, B. Kandinov, D. Paleacu, and A. D. Korczyn, Freezing of gait in patients with advanced Parkinson's disease. J. Neural Transmission (Budapest) 2001; 108: 53–61.
- 79N. Giladi, D. McMahon, S. Przedborski, E. Flaster, S. Guillory, V. Kostic, and S. Fahn, Motor blocks in Parkinson's disease. Neurology 1992; 42: 333–339.
- 80M. P. Murray, S. B. Sepic, G. M. Gardner, and W. J. Downs, Walking patterns of men with parkinsonism. Am. J. Phys. Med. 1978; 57: 278–294.
- 81A. Nieuwboer, R. Dom, W. DeWeerdt, K. Desloovere, S. Fieuws, and E. Broens-Kaucsik, Abnormalities of the spatiotemporal characteristics of gait at the onset of freezing in Parkinson's disease. Movement Disord 2001; 16: 1066–1075.
- 82E. Ueno, N. Yanagisawa, and M. Takami, Gait disorders in parkinsonism. A study with floor reaction forces and EMG. Advances Neurol 1993; 60: 414–418.
- 83M. Martin, M. Shinberg, M. Kuchibhatla, L. Ray, J. J. Carollo, and M. L. Schenkman, Gait initiation in community-dwelling adults with Parkinson disease: comparison with older and younger adults without the disease. Phys. Ther. 2002; 82: 566–577.
- 84J. P. Azulay, S. Mesure, B. Amblard, O. Blin, I. Sangla, and J. Pouget, Visual control of locomotion in Parkinson's disease. Brain 1999; 122: 111–120.
- 85G. Kemoun and L. Defebvre, Gait disorders in Parkinson disease. Clinical description, analysis of posture, initiation of stabilized gait [in French]. Presse Medicale. 2001; 30: 452–459.
- 86A. M. Ferrandez and O. Blin, A comparison between the effect of intentional modulations and the action of L-dopa on gait in Parkinson's disease. Behav. Brain Res. 1991; 45: 177–183.
- 87R. E. Van Emmerik, R. C. Wagenaar, A. Winogrodzka, and E. C. Wolters, Identification of axial rigidity during locomotion in Parkinson disease. Arch. Phys. Med. Rehabil 1999; 80: 186–191.
- 88J. P. Azulay, C. Van Den Brand, D. Mestre, O. Blin, I. Sangla, J. Pouget, and G. Serratrice, Automatic motion analysis of gait in patients with Parkinson disease: effects of levodopa and visual stimulations. [in French]. Revue Neurologique 1996; 152: 128–134.
- 89G. Ebersbach, M. Heijmenberg, L. Kindermann, T. Trottenberg, J. Wissel, and W. Poewe, Interference of rhythmic constraint on gait in healthy subjects and patients with early Parkinson's disease: Evidence for impaired locomotor pattern generation in early Parkinson's disease. Movement Disord. 1999; 14: 619–625.
- 90O. Blin, A. M. Ferrandez, J. Pailhous, and G. Serratrice, A new method of quantitative analysis of parkinsonian gait: report of 6 patients. [in French]. Revue Neurologique 1990; 146: 48–50.
- 91O. Blin, A. M. Ferrandez, J. Pailhous, and G. Serratrice, Dopa-sensitive and dopa-resistant gait parameters in Parkinson's disease. J. Neurolog. Sci. 1991; 103: 51–54.
- 92M. MacKay-Lyons, Variability in spatiotemporal gait characteristics over the course of the L-dopa cycle in people with advanced Parkinson disease. Phys. Ther 1998; 78: 1083–1094.
- 93J. M. Hausdorff, M. E. Cudkowicz, R. Firtion, J. Y. Wei, and A. L. Goldberger, Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease. Movement Disord 1998; 13: 428–437.
- 94J. M. Hausdorff, J. D. Schaafsma, Y. Balash, A. L. Bartels, T. Gurevich, and N. Giladi, Impaired regulation of stride variability in Parkinson's disease subjects with freezing of gait. Exper. Brain Res. 2003; 149: 187–194.
- 95A. Nieuwboer, W. DeWeerdt, R. Dom, L. Peeraer, E. Lesaffre, F. Hilde, and B. Baunach, Plantar force distribution in Parkinsonian gait: A comparison between patients and age-matched control subjects. Scand. J. Rehabil. Med. 1999; 31: 185–192.
- 96H. Mitoma, Kinematic and EMG pattern of parkinsonian gait. [in Japanese]. Nippon Rinsho - Jap. J. Clin. Med. 1997; 55: 163–167.
- 97S. W. Pedersen, B. Oberg, L. E. Larsson, and B. Lindval, Gait analysis, isokinetic muscle strength measurement in patients with Parkinson's disease. Scand. J. Rehabil. Med. 1997; 29: 67–74.
- 98M. Morris, R. Iansek, T. Matyas, and J. Summers, Abnormalities in the stride length-cadence relation in parkinsonian gait. Movement Disord. 1998; 13: 61–69.
- 99M. E. Morris, R. Iansek, T. A. Matyas, and J. J. Summers, The pathogenesis of gait hypokinesia in Parkinson's disease. Brain 1994; 117: 1169–1181.
- 100M. E. Morris, R. Iansek, T. A. Matyas, and J. J. Summers, Ability to modulate walking cadence remains intact in Parkinson's disease. J. Neurol. Neurosurg. Psychiatry 1994; 57: 1532–1534.
- 101A. A. Guccione, D. T. Felson, J. J. Anderson, J. M. Anthony, Y. Zhang, P. W. Wilson, M. Kelly-Hayes, P. A. Wolf, B. E. Kreger, and W. B. Kannel, The effects of specific medical conditions on the functional limitations of elders in the Framingham Study. Am. J. Public Health 1994; 84: 351–358.
- 102R. C. Lawrence, C. G. Helmick, F. C. Arnett, R. A. Deyo, D. T. Felson, E. H. Giannini, S. P. Heyse, R. Hirsch, M. C. Hochberg, G. G. Hunder, M. H. Liang, S. R. Pillemer, V. D. Steen, and F. Wolfe, Estimates of the prevalence of arthritis and selected musculoskeletal disorders in the United States. Arthritis Rheum 1998; 41: 778–799.
- 103K. S. Al-Zahrani and A. M. Bakheit, A study of the gait characteristics of patients with chronic osteoarthritis of the knee. Disabil. Rehabil. 1920; 24: 275–280.
- 104N. M. Fisher, S. C. White, H. J. Yack, R. J. Smolinski, and D. R. Pendergast, Muscle function and gait in patients with knee osteoarthritis before and after muscle rehabilitation. Disabil. Rehabil. 1997; 19: 47–55.
- 105G. E. Bertocci, M. C. Munin, K. L. Frost, R. Burdett, C. A. Wassinger, and S. G. Fitzgerald, Isokinetic performance after total hip replacement. Am. J. Phys. Med. Rehabil. 2004; 83: 1–9.
- 106K. Jadelis, M. E. Miller, W. H. Ettinger, Jr., and S. P. Messier, Strength, balance, and the modifying effects of obesity and knee pain: Results from the Observational Arthritis Study in Seniors (oasis). J. Am. Geriatr. Soc 2001; 49: 884–891.
- 107S. P. Messier, Osteoarthritis of the knee: An interdisciplinary perspective. Med. Sci. Sports Exerc 1994; 26: 1427–1428.
- 108S. P. Messier, Osteoarthritis of the knee and associated factors of age and obesity: Effects on gait. Med. Sci. Sports Exerc 1994; 26: 1446–1452.
- 109S. P. Messier, R. F. Loeser, J. L. Hoover, E. L. Semble, and C. M. Wise, Osteoarthritis of the knee: Effects on gait, strength, and flexibility. Arch. Phys. Med. Rehabil. 1992; 73: 29–36.
- 110R. S. Hinman, K. L. Bennell, B. R. Metcalf, and K. M. Crossley, Delayed onset of quadriceps activity and altered knee joint kinematics during stair stepping in individuals with knee osteoarthritis. Arch. Phys. Med. Rehabil. 2002; 83: 1080–1086.
- 111S. P. Messier, C. D. Thompson, and W. H. Ettinger, Jr., Effects of long-term aerobic or weight training regimens on gait in an older, osteoarthritic population. J. Appl. Biomech. 1997; 13: 205–225.
- 112H. Gur, N. Cakin, B. Akova, E. Okay, and S. Kucukoglu, Concentric versus combined concentric-eccentric isokinetic training: Effects on functional capacity and symptoms in patients with osteoarthrosis of the knee. Arch. Phys. Med. Rehabil 2002; 83: 308–316.
- 113S. P. Messier, R. F. Loeser, G. D. Miller, T. M. Morgan, W. J. Rejeski, M. A. Sevick, W. H. Ettinger, Jr., M. Pahor, and J. D. Williamson, Exercise and dietary weight loss in overweight and obese older adults with knee osteoarthritis: The Arthritis, Diet, and Activity Promotion Trial. Arthritis Rheum. 2004; 50: 1501–1510.
- 114S. P. Messier, T. D. Royer, T. E. Craven, M. L. O’Toole, R. Burns, and W. H. Ettinger, Jr., Long-term exercise and its effect on balance in older, osteoarthritic adults: Results from the Fitness, Arthritis, and Seniors Trial (FAST). J. Am. Geriatr. Soc. 2000; 48: 131–138.
- 115G. D. Miller, W. J. Rejeski, J. D. Williamson, T. Morgan, M. A. Sevick, R. F. Loeser, W. H. Ettinger, and S. P. Messier, The Arthritis, Diet and Activity Promotion Trial (ADAPT): Design, rationale, and baseline results. Control Clin. Trials. 2003; 24: 462–480.
- 116B. J. Nicklas, W. Ambrosius, S. P. Messier, G. D. Miller, B. W. Penninx, R. F. Loeser, S. Palla, E. Bleecker, and M. Pahor, Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: A randomized controlled clinical trial. Am. J. Clin. Nutr. 2004; 79: 544–551.
- 117S. P. Messier, R. F. Loeser, M. N. Mitchell, G. Valle, T. P. Morgan, W. J. Rejeski, and W. H. Ettinger, Exercise and weight loss in obese older adults with knee osteoarthritis: A preliminary study. J. Am. Geriatr. Soc. 2000; 48: 1062–1072.
- 118E. A. Morra, P. D. Postak, N. A. Plaxton, and A. S. Greenwald, The effects of external torque on polyethylene tibial insert damage patterns. Clin. Orthopaed. Related Res. 2003; 410: 90–100.
- 119J. B. Stiehl, R. D. Komistek, and D. A. Dennis, Detrimental kinematics of a flat on flat total condylar knee artroplasty. Clin. Orthopaed. Related Res. 1999; 365: 139–149.
- 120M. B. Hilding, L. Ryd, S. Toksvig-Larsen, A. Mann, and A. Stenstrom, Gait affects tibial component fixation. J. Arthroplasty 1999; 14: 589–593.
- 121M. B. Hilding, H. Lanshammar, and L. Ryd, Knee joint loading and tibial component loosening. RSA and gait analysis in 45 osteoarthritic patients before and after TKA. J. Bone Joint Surg. Br. 1996; 78: 66–73.
- 122W. C. Lee, M. Zhang, X. Jia, and J. T. Cheung, Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket. Med. Eng. Phys. 2004; 26: 655–662.
- 123L. L. Willingham, N. C. Buell, K. J. Allyn, B. J. Hafner, and D. G. Smith, Measurement of knee center alignment trends in a national sample of established users of Otto Bock C-Leg microprocessor controlled knee unit. Proceedings of the 11th World Congress of the International Society for Prosthetics & Orthotics, Hong Kong, August 1–6, 2004.