Artificial Blood
Sarit Sivan
Technion – Israel Institute of Technology, The Leonard and Diane Sherman Center for Research in Biomaterials, Department of Biomedical Engineering, Haifa, Israel
Search for more papers by this authorNoah Lotan
Technion – Israel Institute of Technology, The Leonard and Diane Sherman Center for Research in Biomaterials, Department of Biomedical Engineering, Haifa, Israel
Search for more papers by this authorSarit Sivan
Technion – Israel Institute of Technology, The Leonard and Diane Sherman Center for Research in Biomaterials, Department of Biomedical Engineering, Haifa, Israel
Search for more papers by this authorNoah Lotan
Technion – Israel Institute of Technology, The Leonard and Diane Sherman Center for Research in Biomaterials, Department of Biomedical Engineering, Haifa, Israel
Search for more papers by this authorAbstract
The possibility of using human blood for transfusion is limited by requirements of blood-typing, the danger of transmitting certain diseases, and a short shelf life of liquid blood. These limitations and the wide range of applications of blood substitutes have fueled a worldwide search for safe, effective, and universal blood substitute materials.
One major route to avoid the problems associated with blood (i.e., AIDS, Hepatitis, etc.) involves the use of isolated human hemoglobin (Hb) because of its high capacity of oxygen and hemocompatibility. However, cell-free Hb has to be either molecularly modified or encapsulated in order to prevent its dissociation into dimers, decrease the high oxygen affinity, and increase the retention time in circulation. This route of research requires the use of specifically designed cross-linker reagents necessary to modify the Hb protein.
With molecular engineering techniques, a new family of cross-linking reagents was developed, based on nicotinamide-adenine dinucleotide (NAD) derivatives. One of the reagents designed, namely oxidized beta-NAD (o-NAD), was reacted with deoxyHb to produce NAD-derivatized hemoglobin (HbNAD). The latter was further polymerized to yield poly-HbNAD.
Macroscopic properties of HbNAD and poly-HbNAD were studied. From the results obtained, it is evident that poly-HbNAD possesses a physiological oxygen-carrying capacity and oncotic characteristics similar to whole blood. These properties make poly-HbNAD a viable potential candidate as a resuscitation fluid.
Bibliography
- 1J. S. Jahr, S. B. Nesargi, K. Lewis, and C. Johnson, Blood substitutes and oxygen therapeutics: an overview and current status. Am. J. Ther. 2002; 9: 437–443.
- 2D. Hunkeler, A. Cherrington, A. Prokop, and R. Rajotte, Bioartificial organs: glossary of terms. Ann. New York Acad. Sci. 2001; 944: 7–17.
- 3S. Matsumoto and Y. Kuroda, Perfluorocarbon for organ preservation before transplantation. Transplantation 2002; 27: 1804–1809.
10.1097/00007890-200212270-00030 Google Scholar
- 4S. A. Gould, A. L. Rosen, L. R. Sehgal, H. L. Sehgal, L. A. Langdale, L. M. Krause, C. L. Rice, and W. H. Chamberlin, Fluosol-DA as a red cell substitute in acute anemia. N. Engl. J. Med. 1986; 314: 1653–1656.
- 5R. M. Kacmarek, Liquid ventilation. Respir. Care Clin. N. Am. 2002; 8: 187–209.
- 6R. P. Geyer, Whole animal perfusion with fluorocarbon dispersion. Fed. Proc. Fed. Am. Soc. Exp. Biol. 1970; 29: 1758–1763.
- 7J. G. Riess and M. P. Krafft, Fluorinated materials for in vivo oxygen transport (Blood Substitutes), diagnosis and drug delivery. Biomaterials 1998; 19: 1529–1539.
- 8D. Wong and N. Lois, Perfluorocarbons and semifluorinated alkanes. Semin. Ophthalmol. 2000; 15: 25–35.
- 9S. Rudiger, U. Gross, and E. Kemnitz, Perfluorocarbons - useful tools for medicine. Eur. J. Med. Res. 2000; 5: 209–216.
- 10R. Benesch and R. E. Benesch, Intracellular organic phosphates as regulators of oxygen release by hemoglobin. Nature 1969; 221: 618–622.
- 11R. Benesch, R. E. Benesch, S. Yung, and R. Edalji, Hemoglobin covalently bridged across the polyphosphate binding site. Biochem. Biophys. Res. Commun. 1975; 63: 1123–1129.
- 12R. Benesch and R. E. Benesch, Preparation and properties of hemoglobin modified with derivatives of pyridoxal. Methods Enzymol. 1981; 76: 147–159.
- 13J. C. Hsia, D. L. Song, L. T. L. Wong, and S. S. Er, Molecular determination of o-Raffinose-polymerized human hemoglobin. Biomat. Art. Cells and Immob. Biotech. 1992; 20: 293–296.
- 14R. E. Benesch, S. Yung, T. Suzuki, and C. Bauer, Pyridoxal compounds as specific reagents for the α and β N-termini of hemoglobin. Proc. Nat. Acad. Sci. USA. 1973; 70: 2595–2599.
- 15R. E. Benesch and S. Kwong, Bis-pyridoxal phosphates: a new class of specific intramolecular crosslinking agents for hemoglobin. Biochem. Biophys. Res. Commun. 1988; 156: 9–14.
- 16R. E. Benesch and S. Kwong, Hemoglobin tetramers stabilized by a single intramolecular cross-link. J. Protein Chem. 1991; 10: 503–510.
- 17J. C. Bakker, G. A. M. Berbers, W. K. Bleeker, P. J. den Boer, and P. T. M. Bisselles, Preparation and characterization of crosslinked and polymerized hemoglobin solutions. Biomat. Art. Cell Immob. Biotechnol. 1992; 20: 233–241.
- 18P. Bender, Hemoglobin-based oxygen carriers. Biotech. Lab. Int. 1999; 4: 16–19.
- 19E. Bucci, A. Razynsak, B. Urbaitis, and C. Fronticelli, Pseudo cross-link of human hemoglobin with mono-(3,5-dibromosalicyl)fumarate. J. Biol. Chem. 1989; 264: 6191–6195.
- 20E. Bucci, C. Fronticelli, A. Razynska, V. Militello, R. Koehler, and B. Urbaitis, Hemoglobin tetramers stabilized with polyaspirins. Biomat. Art. Cells Immob. Biotech. 1992; 20: 243–252.
- 21T. M. S. Chang, Hemoglobin corpuscles. (Report of a research project of B.Sc. Honors Physiology, McGill University, 1957, pp. 1–25. Medical Library, McIntyre Building McGill University, 1957), reprinted in Artific. Red Blood Cells Artific. Org. 1988; 16:1–9.
- 22T. M. S. Chang, Blood substitutes: principles, methods, products and clinical trials. In: T. M. S. Chang, ed., Modified Hemoglobin-Based Blood Substitutes: Crosslinked, Recombinant and Encapsulated Hemoglobin. New York: Karger-Lands Systems, 1998.
- 23T. M. S. Chang, Recent and future developments in modified hemoglobin and microencapsulated hemoglobin as red blood cell substitutes. Art. Cells, Blood Subs. Immob. Biotechnol. 1997; 25: 1–24.
- 24R. Chatterjee, E. V. Welty, R. Y. Walder, S. L. Pruitt, P. H. Rogers, A. Arnone, and J. A. Walder, Isolation and characterization of a new hemoglobin derivative cross-linked between the α chains (lysine 99α1→lysine 99α2). J. Biol. Chem. 1986; 261: 9929–9937.
- 25C. P. Stowell, Hemoglobin-based oxygen carriers. Curr. Opin. Hematol. 2002; 9: 537–543.
- 26E. Dellacherie, M. Grandgeorge, F. Prouchayret, and G. Fasan, Hemoglobin linked to polyanionic polymers as potential red blood cell substitute. Biomat. Art. Cells Immob. Biotechnol. 1992; 20: 309–317.
- 27L. Djordjevich and I. F. Miller, Synthetic erythrocytes from lipid encapsulated hemoglobin. Exp. Hamatol. 1980; 8: 584–592.
- 28A. G. Fallon and R. L. Schnaare, Cross-linked hemoglobin as a potential membrane for an artificial red blood cell. Art. Cells Blood Subs. Immob. Biotechnol. 2001; 29: 285–296.
- 29W. J. Fantl, L. R. Manning, H. Ueno, A. Di Donato, and J. M. Manning, Properties of carboxymethylated cross linked hemoglobin A. Biochemistry 1987; 26: 5755–5761.
- 30M. C. Farmer and B. P. Gaber, Liposome-encapsulated hemoglobin as an artificial oxygen-carrying system. Methods Enzymol. 1987; 149: 184–200.
- 31A. S. Rudolph, Encapsulated hemoglobin: current issues and future goals. Art. Cells Blood Sub. Immob. Biotechnol. 1994; 22: 347–360.
- 32S. Sivan, Molecular engineering of bioactive materials with defined specificity: design and synthesis of hemoglobin derivatives, Ph.D. thesis, Technion – Israel Institute of Technology, Haifa, Israel, 2000.
- 33S. Sivan and N. Lotan, Molecular engineering of proteins with predetermined function: part I: design of a hemoglobin-based oxygen carrier. Biomolecular Engineer. 2003; 20: 83–90.
- 34D. R. Spahn, Current status of artificial oxygen carriers. Adva. Drug Deliv. Rev. 2000; 40: 143–151.
- 35F. J. Carmichael, A. C. Ali, J. A. Campbell, S. F. Langlois, G. P. Biro, A. R. Willan, C. H. Pierce, and A. G. Greenburg, A phase I study of oxidized raffinose cross-linked human hemoglobin. Crit. Care Med. 2000; 28: 2283–2292.
- 36K. Hanazawa, H.Ohzeki, H. Moro, S. Eguchi, T. Nakajima, T. Makifuchi, K. Miyashita, M. Nishiura, and H. Naritomi, Effects of partial blood replacement with pyridoxylated hemoglobin polyoxyethylene conjugate solution on transient cerebral ischemia in gerbil. Art. Cells, Blood Subs. Immob. Biotechnol. 1997; 25: 104–155.
- 37E. Ilan, P. G. Morton, and T. M. S. Chang, Bovine Hemoglobin anaerobically reacted with divinylsulfone: a potential source for hypothermic oxygen carriers. Biomat. Art. Cells Immob. Biotechnol. 1992; 20: 263–275.
- 38Y. Iwashita, A. Yabuki, K.Yamaji, K. Iwasaki, T. Okami, C. Hirati and K. Kosaka, A new resuscitation fluid “Stabilized Hemoglobin”: preparation and characteristics. Artific. Cells Artific. Org. 1988; 16: 271–280.
- 39P. E. Keipert and T. M. S. Chang, Pyridoxylated-polyhemoglobin solution: a low viscosity oxygen-delivering blood replacement fluid with normal oncotic pressure and long-term storage feasibility. Biomat. Artif. Cells Artif. Org. 1988; 16: 185–196.
- 40P. E. Keipert, Properties of chemically cross linked hemoglobin solutions designed as temporary oxygen carriers. Adv. Exp. Med. Biol. 1992; 37: 453–464.
10.1007/978-1-4615-3428-0_51 Google Scholar
- 41D. D. Powanda and T. M. S. Chang, Cross-linked polyhemoglobin-superoxide dismutase-catalase supplies oxygen without causing blood-brain barrier disruption or brain edema in a rat model of transient global brain ischemia-reperfusion. Art. Cells Blood Subs. Immob. Biotechnol. 2002; 30: 23–37.
- 42J. E. Squires, Artificial blood. Science 2002; 295: 1002–1005.
- 43D. Looker, D. Abbott-Brown, P. Cozart, S. Durfee, S. Hoffman, A. J. Mathews, J. Miller-Roehrich, S. Shoemaker, S. Trimble, G. Fermi, N. H. Komiyama, K. Nagai, and G. Stetler, A human recombinant hemoglobin designed for use as a blood substitute. Nature (Lond). 1992; 356: 258–260.
- 44L. R. Manning, S. Morgan, R. C. Beavis, B. T. Chait, J. M. Manning, J. R. Hess, M. Cross, D. L. Currell, M. A. Marini, and R. M. Winslow, Preparation, properties and plasma retention of hemoglobin derivatives: comparison of uncrosslinked carboxymethylated hemoglobin with crosslinked tetrameric hemoglobin. Proc. Natl. Acad. Sci. USA. 1991; 88: 3329–3333.
- 45M. A. Marini, G. L. Moore, S. M. Christensen, R. M. Fishman, R. G. Jesse, F. Medina, S. M. Snell, and A. Zegna, Re-examination of the polymerization of pyridoxylated hemoglobin with glutaraldehyde. Biopolymers 1990; 29: 871–882.
- 46M. Marta, M. Patamia, A. Lupi, M. Antenucci, M. Di Iorio, S. Romeo, M. Petruzzelli, M. Pomponi, and B. Giardina, Bovine hemoglobin cross-linked through the beta chains. J. Biol. Chem. 1996; 271: 7473–7478.
- 47A. O. Schubert, J. F. Hara, R. J. Przbelski, J. E.Tetzlaff, K. E. Marks, E. Mascha, and A. C. Novick, Effect of diaspirin crosslinked hemoglobin (DCLHb HemAssist) during high blood loss surgery on selected indices of organ function. Art. Cells Blood Subs. Immob. Biotechnol. 2002; 30: 259–283.
- 48K. W. Olsen, Q. Y. Zhang, H. Huang, G. K. Sabaliauskas, and T. Yang, Stabilities and properties of multilinked hemoglobin. Biomat. Art. Cells Immob. Biotechnol. 1992; 20: 283–285.
- 49S. A. Shoemaker, M. J. Gerber, G. L. Evans, L. E. Archer-Paik, and C. H. Scoggin, Initial clinical experience with a rationally designed, genetically engineered recombinant human hemoglobin. Art. Cells, Blood Subs. Immob. Biotechnol. 1994; 22: 457–465.
- 50H. Sakai, M. Yuasa, H. Onuma, S. Takeoka, and E. Tsuchida, Synthesis and physicochemical characterization of a series of hemoglobin-based oxygen carriers: objective comparison between cellular and acellular types. Bioconjug. Chem. 2000; 11: 56–64.
- 51K. D. Vandegriff and R. M. Winslow, Hemoglobin-based blood substitutes. Chem. Industry 1991; 14: 497–501.
- 52K. D. Vandegriff, D. F. H. Wallach, and R. M. Winslow, Encapsulation of hemoglobin in non-phospholipid vesicles. Art. Cells, Blood Subs. Immob. Biotechnol. 1994; 22: 849–854.
- 53A. Pocker, Synthesis of 2-nor-2-formylpyridoxal 5′-phosphate, a bifunctional reagent specific for the cofactor site in proteins. J. Org. Chem. 1973; 38: 4295–4299.
- 54D. Pliura, Selective crosslinking of hemoglobins by oxidized, ring-opened saccharides, U.S. Patent 5,532,352, 1994.
- 55W. P. Yu and T. M. S. Chang, Preparation and characterization of hemoglobin nanocapsules: 1. Evaluation of polymer composite in the nanocapsule formulation. Art. Cells, Blood Subs. Immob. Biotechnol. 1998; 26: 69.
- 56S. H. Zuckerman, M. P. Doyle, R. Gorozynski, and G. J. Rosenthal, Preclinical biology of recombinant human hemoglobin, rHb1.1. Art. Cells, Blood Subs. Immob. Biotechnol. 1998; 26: 231–257.
- 57U. K. Laemmli, Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685.
- 58J. W. Prather, K. A. Gaar, and A. C.Guyton, Direct continuous recording of plasma colloid osmotic pressure of whole blood. J. Appl. Physiol. 1968; 24: 602.
- 59L.Tentorii and M. Salvati, Hemoglobinometry in human blood. Methods Enzymol. 1981; 76: 707–715.
- 60E. Antonini and M. Brunori. Hemoglobin. Annu. Rev. Biochem. 1970; 39: 977–1042.
- 61T. Asakura, O. Tsuyoshi, S. Friedman, and E. Schwartz, Abnormal precipitation of oxyhemoglobin S by mechanical shaking. Proc. Natl. Acad. Sci. USA. 1974; 71: 1594–1598.
- 62B. Masala and L. Manca, High-performance liquid chromatography of globin chains in the identification of human globin gene abnormalities. Biophys. Chem. 1990; 37: 225–230.
- 63T. N. Estep, M. K. Bechtel, T. J. Miller, and A. Bagdasarian, Virus inactivation in hemoglobin solutions by heat. Biomat. Art. Cells Art. Org. 1988; 16: 129–134.
- 64M. Farmer, A. Ebeling, T. Marshall, W. Hauck, C. S. Sun, E. White, and Z. Long, Validation of virus inactivation by heat treatment in the manufacture of diaspirin crosslinked hemoglobin. Biomat. Art. Cells Immob. Biotechnol. 1992; 20: 429–433.
- 65J. B. Shelton, J. R. Shelton, and W. A. Schroeder, High performance liquid chromatography of globin chains on a large-pore C4 column. J. Liquid Chromatogr. 1984; 7: 1969–1977.
- 66N. Lotan, personal communication.
- 67W. W. Nichols, McDonald’s Blood Flow in Arteries: Theoretic, Experimental and Clinical Principles. London: Arnold, 1998.
- 68S. Usami and S. Chien, Hemoglobin solutions as plasma expanders: effect on blood viscosity. Proc. Soc. Exp. Biol. Med. 1971; 136: 1232–1236.
- 69M. Blank, Molecular association and viscosity of hemoglobin solutions. J. Theor Biol. 1984; 108: 55–64.