Sleep
Peter Achermann
University of Zurich, Institute Pharmacology and Toxicology, Zurich, Switzerland
Search for more papers by this authorPeter Achermann
University of Zurich, Institute Pharmacology and Toxicology, Zurich, Switzerland
Search for more papers by this authorAbstract
Sleep is a reversible, periodical state of quiescence that is more than the absence of being awake—it is an active state that is regulated. Typical changes in the pattern of the electroencephalogram (EEG) serve to discriminate sleep and waking. Modern sleep research is intimately linked to the ability of recording the EEG and to its quantitative analysis. The cyclic alternation of the two basic sleep states, non rapid-eye-movement (non REM) sleep and rapid-eye-movement (REM) sleep, is one of the hallmarks of sleep. Sleep homeostasis denotes a basic principle of sleep regulation. A sleep deficit elicits a compensatory increase in the intensity and duration of sleep, whereas excessive sleep reduces sleep propensity. EEG slow-wave activity (SWA), a correlate of sleep intensity, serves as an indicator of sleep homeostasis in nonREM sleep. The level of SWA is determined by the duration of prior sleep and waking. Recent evidence exists for a local use-dependent facet of sleep regulation. Selective unihemispheric regional cerebral activation during waking gives rise to a predominant increase of sleep intensity in the previously activated region as reflected by enhancement of SWA.
Bibliography
- 1M. H. Kryger, T. Roth, and W. C. Dement, Principles and Practice of Sleep Medicine, 4th ed. Philadelphia, PA: Elsevier Saunders, 2005.
10.1016/B0-72-160797-7/50101-4 Google Scholar
- 2A. Rechtschaffen and A. Kales, A Manual of Standardized Terminology, Techniques and Scoring System for Sleep Stages of Human Subjects. Bethesda, MD: National Institutes of Health, 1968.
- 3G. Dietsch, Fourier-Analyse von Elektroencephalogrammen des Menschen. Pflügers Arch. 1932; 230: 106–112.
10.1007/BF01751972 Google Scholar
- 4J. R. Knott, F. A. Gibbs, and C. E. Henry, Fourier transforms of the electroencephalogram during sleep. J. Exp. Psychol. 1942; 31: 465–477.
10.1037/h0058545 Google Scholar
- 5S. M. Kay, Modern Spectral Estimation: Theory and Application. Englewood Cliffs, NJ: Prentice-Hall, 1988.
- 6M. B. Priestley, Spectral Analysis and Time Series, vol 2., Multivariate Series, Prediction and Control. New York: Academic Press, 1981.
- 7P. L. Nunez, B. M. Wingeier, and R. B. Silberstein, Spatial-temporal structures of human alpha rhythms: theory, microcurrent sources, multiscale measurements, and global binding of local networks. Hum. Brain Mapp. 2001; 13: 125–164.
- 8P. Achermann and A. A. Borbély, Coherence analysis of the human sleep electroencephalogram. Neuroscience 1998; 85: 1195–1208.
- 9B. Salzberg, N. R. Burch, M. A. McLennan, and E. G. Corell, A new approach to signal analysis in electroencephalography. IRE Trans. Med. Electron 1957; 8: 24–30.
10.1109/IRET-ME.1957.5008605 Google Scholar
- 10I. Feinberg, J. D. March, G. Fein, T. C. Floyd, J. M. Walker, and L. Price, Period and amplitude analysis of 0.5–3 Hz activity in NREM sleep of young adults. Electroencephalogr. Clin. Neurophysiol. 1978; 44: 202–213.
- 11D. Gabor, Theory of communication. J. Inst. Elec. Eng. 1946; 93: 429–457.
- 12M. Jobert, C. Tismer, E. Poiseau, and H. Schulz, Wavelets - a new tool in sleep biosignal analysis. J. Sleep Res. 1994; 3: 223–232.
- 13P. Achermann and A. A. Borbély, Mathematical models of sleep regulation. Frontiers Biosci. 2003; 8: s683–s693.
- 14H. Blake and R. W. Gerard, Brain potentials during sleep. Am. J. Physiol. 1937; 119: 692–703.
10.1152/ajplegacy.1937.119.4.692 Google Scholar
- 15A. A. Borbély and P. Achermann, Sleep homeostasis and models of sleep regulation. In: M. H. Kryger, T. Roth, and W. C. Dement, eds., Principles and Practice of Sleep Medicine, 4th ed. Philadelphia, PA: Elsevier Saunders, 2005, pp. 405–417.
10.1016/B0-72-160797-7/50040-9 Google Scholar
- 16T. J. Sejnowski and A. Destexhe, Why do we sleep? Brain Res. 2000; 886: 208–223.
- 17S. Gais, M. Molle, K. Helms, and J. Born, Learning-dependent increases in sleep spindle density. J. Neurosci. 2002; 22: 6830–6834.
- 18D. J. Dijk and C. A. Czeisler, Contribution of the circadian pacemaker and the sleep homeostat to sleep propensity, sleep structure, electroencephalographic slow waves, and sleep spindle activity in humans. J. Neurosci. 1995; 15: 3526–3538.
- 19C. A. Czeisler, J. F. Duffy, T. L. Shanahan, E. N. Brown, J. F. Mitchell, D. W. Rimmer, J. M. Ronda, E. J. Silva, J. S. Allan, J. S. Emens, D. J. Dijk, and R. E. Kronauer, Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 1999; 284: 2177–2181.
- 20J. H. Benington and H. C. Heller, Does the function of REM sleep concern non-REM sleep or waking? Prog. Neurobiol. 1994; 44: 433–449.
- 21P. Franken, Long-term vs. short-term processes regulating REM sleep. J. Sleep Res. 2002; 11: 17–28.
- 22A. A. Borbély and P. Achermann, Sleep homeostasis and models of sleep regulation. J. Biol. Rhythms. 1999; 14: 557–568.
- 23L. A. Finelli, H. Baumann, A. A. Borbély, and P. Achermann, Dual electroencephalogram markers of human sleep homeostasis: correlation between theta activity in waking and slow-wave activity in sleep. Neuroscience 2000; 101: 523–529.
- 24A. A. Borbély and P. Achermann, Concepts and models of sleep regulation: an overview. J. Sleep Res. 1992; 1: 63–79.
- 25S. Daan, D. G. M. Beersma, and A. A. Borbély, Timing of human sleep: recovery process gated by a circadian pacemaker. Am. J. Physiol. 1984; 246: R161–R178.
- 26S. Folkard, T. Åkerstedt, I. Macdonald, P. Tucker, and M. B. Spencer, Beyond the three-process model of alertness: estimating phase, time on shift, and successive night effects. J. Biol. Rhythms. 1999; 14: 577–587.
- 27M. E. Jewett and R. E. Kronauer, Interactive mathematical models of subjective alertness and cognitive throughput in humans. J. Biol. Rhythms. 1999; 14: 588–597.
- 28R. W. McCarley and S. G. Massaquoi, A limit cycle mathematical model of the REM sleep oscillatior system. Am. J. Physiol. 1986; 251: R1011–R1029.
- 29R. E. Kronauer, A quantitative model for the effects of light on the amplitude and phase of the deep circadian pacemaker, based on human data. In: J. Horne, ed., Sleep ‘90. Bochum: Pontenagel Press, 1990. pp. 306–309.
- 30A. A. Borbély, A two process model of sleep regulation. Hum. Neurobiol. 1982; 1: 195–204.
- 31J. Louis, C. Cannard, H. Bastuji, and M. J. Challamel, Sleep ontogenesis revisited: a longitudinal 24-hour home polygraphic study on 15 normal infants during the first two years of life. Sleep 1997; 20: 323–333.
- 32P. A. Coble, D. J. Kupfer, L. S. Taska, and J. Kane, EEG sleep of normal healthy children. Part I: Findings using standard measurement methods. Sleep 1984; 7: 289–303.
- 33M. Hirshkowitz, Normal human sleep: an overview. Med. Clin. N. Am. 2004; 88: 551–565.
- 34T. Anders, R. Emde, and A. Parmelee, A Manual of Standardized Terminology, Techniques and Criteria for Scoring of States of Sleep and Wakefulness in Newborn Infants. Los Angeles, CA: UCLA Brain Information Service/Brain Research Institute, 1971.
- 35C. Guilleminault and M. Soquet, Sleep states and related pathology. In: R. Korobkin and C. Guilleminault, eds., Advances in Perinatal Neurology. New York: SP Medical & Scientific Books, 1979, pp. 225–247.
- 36J. M. Krueger and F. Obál Jr., A neuronal group theory of sleep function. J. Sleep Res. 1993; 2: 63–69.
- 37J. H. Benington and H. C. Heller, Restoration of brain energy metabolism as the function of sleep. Prog. Neurobiol. 1995; 45: 347–360.
- 38T. Porkka-Heiskanen, L. Alanko, A. Kalinchuk, and D. Stenberg, Adenosine and sleep. Sleep Med. Rev. 2002; 6: 321–332.
- 39L. A. Finelli, A. A. Borbély, and P. Achermann, Functional topography of the human nonREM sleep electroencephalogram. Eur. J. Neurosci. 2001; 13: 2282–2290.
- 40P. Maquet, Functional neuroimaging of normal human sleep by positron emission tomography. J. Sleep Res. 2000; 9: 207–231.
- 41M. Thomas, H. Sing, G. Belenky, H. Holcomb, H. Mayberg, R. Dannals, H. Wagner, D. Thorne, K. Popp, L. Rowland, A. Welsh, S. Balwinski, and D. Redmond, Neural basis of alertness and cognitive performance impairments during sleepiness. I. Effects of 24 h of sleep deprivation on waking human regional brain activity. J. Sleep Res. 2000; 9: 335–352.
- 42Y. Harrison and J. A. Horne, The impact of sleep deprivation on decision making: a review. J. Exp. Psychol. Appl. 2000; 6: 236–249.
- 43J. A. Horne, Human sleep, sleep loss and behaviour. Implications for the prefrontal cortex and psychiatric disorder. Br. J. Psychiatry. 1993; 162: 413–419.
- 44M. Steriade, The corticothalamic system in sleep. Frontiers Biosci. 2003; 8: D878–D899.
- 45F. Obal and J. M. Krueger, Biochemical regulation of non-rapid-eye-movement sleep. Frontiers Biosci. 2003; 8: D520–D550.
- 46A. Steiger, Sleep and endocrine regulation. Frontiers Biosci. 2003; 8: s358–s376.
- 47C. Cirelli, How sleep deprivation affects gene expression in the brain: a review of recent findings. J. Appl. Physiol. 2002; 92: 394–400.
- 48C. Cirelli, Searching for sleep mutants of Drosophila melanogaster. Bioessays 2003; 25: 940–949.