Abstract
A photodiode is a solid-state sensor that responds to light by producing a measurable electronic current. Operating as a quantum threshold detector, a photodiode will only detect photons that exceed a certain energy level (the bandgap energy of the photodiode material) while not detecting photons below this level. This article covers the basics of pn-junction, PIN, and avalanche photodiode operation, as well as the use of photodiodes in several example applications in biology and medicine. Photodiodes are attractive for biomedical applications because they are inexpensive compared with many other detection mechanisms, easy to use, small scale, readily available, and capable of operation in an array for parallel sensing. They are ideal for applications involving bed-side monitoring such as pulse oximetry, rapid diagnosis including point-of-care instrumentation based on lab-on-a-chip technology, and other instances where equipment benefits from greater miniaturization or portability. Semiconductor photodiodes are fabricated using similar methods used to produce transistors and integrated circuits and continue to evolve together with integrated circuits to be efficient and inexpensive photodetectors while maintaining their basic simplicity.
Bibliography
- 1Hamamatsu Corporation (USA). Hammamatsu, Inc. [Online]. Available: http://www.hamamatsu.com/, Accessed July 1, 2005.
- 2S. Kästle, F. Noller, S. Falk, A. Bukta, E. Mayer, and D. Miller, A new family of sensors for pulse oximetry. Hewlett-Packard J. 1997; 48(1): 39–53.
- 3A. J. Tüdős, G. A. J. Besselink, and R. B. M. Schasfoort, Trends in miniaturized total analysis systems for point-of-care testing in clinical chemistry. Lab on a Chip. 2001; 1: 83–95.
- 4M. A. Schwarz and P. C. Hauser, Recent developments in detection methods for microfabricated analytical devices. Lab on a Chip. 2001; 1: 1–6.
- 5E. Verpoorte, Chip vision-optics for microchips. Lab on a Chip. 2003; 3: 42N–52N.
- 6M. Gourley and P. L. Gourley, Integration of electro-optical mechanical systems and medicine: Where are we and where can we go? SPIE Proc. 1997; 2978: 197–204.
- 7I. T. Young, R. Moerman, L. R. Van den Doel, V. Iordanov, A. Kroon, H. R. C. Dietrich, G. W. K. Van Dedem, A. Bossche, B. L. Gray, L. Sarro, P. W. Verbeek, and L. J. Van Vliet, Monitoring enzymatic reactions in nanolitre wells. J. Microsc. 2003; 212(3): 254–263.
- 8K. D. Kramer, K. W. Oh, C. H. Ahn, J. J. Bao, and K. R. Wehmeyer, An optical MEMS-based fluorescence detection scheme with applications to capillary electrophoresis. SPIE Proc. 1998; 3515: 76–85.
- 9L. Chen, D. Godovsky, O. Inganäs, J. C. Hummelen, R. A. J. Janssens, M. Svensson, and M. R. Andersson, Polymer photovoltaic devices from stratified multilayers of donor-accepted blends. Adv. Mater. 2000; 12(18): 1367–1370.
- 10R. F. Pierret, Semiconductor Fundamentals. Reading, MA: Addison-Wesley, 1988.
- 11J. Singh, Semiconductor Optoelectronics. New York: McGraw-Hill, 1995.
- 12S. Donati, Photodetectors: Devices, Circuits, and Applications. Upper Saddle River, NJ: Prentice-Hall, 2000.
- 13P. Bhattacharya, Semiconductor Optoelectronic Devices. Upper Saddle River, NJ: Prentice-Hall, 1997.
- 14M. Fukuda, Optical Semiconductor Devices. New York: Wiley, 1999.
- 15G. W. Neudeck, The Pn Junction Diode. Reading, MA: Addison-Wesley, 1989.
- 16T. P. Pearsall, Photonics Essentials: An Introduction with Experiments. New York: McGraw-Hill, 2003.
- 17R. A. Yotter and D. M. Wilson, A review of photodetectors for sensing light-emitting reporters in biological systems. IEEE Sensors J. 2003; 3(3): 288–303.
- 18G. T. A. Kovacs, Micromachined Transducers Sourcebook. New York: McGraw-Hill, 1998.
- 19R. Rinaldi, E. Branca, R. Cingolani, S. Masiero, G. P. Spada, and G. Gottarelli, Photodetectors fabricated from a self-assembly of a deoxyguanosine derivative. Phys. Lett. 2001; 78(22): 3541–3543.
- 20T. Someya, S. Iba, Y. Kato, T. Sekitani, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, A large-area, flexible, and lightweight sheet image scanner integrated with organic field-effect transistors and organic photodiodes. 2004 International Electron Devices Meeting, 2004:365–368.
- 21E. Higurashi, R. Sawada, and T. Ito, An integrated laser blood flowmeter. J. Lightwave Technol. 2003; 21(3): 591–595.
- 22J. F. L. Goosen, P. J. French, and P. M. Sarro, Pressure, flow and oxygen saturation sensors on one chip for use in catheters. Proc. IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems, 2000:537–540.
- 23D. Kieslinger, K. Trznadal, K. Oechs, S. Draxler, and M. E. Lippitsch, Lifetime-based portable instrument for blood gas analysis. SPIE Proc. 1997; 2976: 71–77.
- 24M. J. P. Leiner, Optical sensors for in vitro blood gas analysis. Sens. Actuat. B. 1995; 29: 169–173.
- 25D. J. Bartnik and R. A. Rymut, Bedside arterial blood gas monitoring system using fluorescent optical sensors. SPIE Proc. 1995; 2388: 529–539.
- 26J. C. Yuen, Monitoring free flaps using the laser Doppler flowmeter: five-year experience. Plast. Reconstruct. Surg. 2000; 105(1): 55–61.
- 27K. Meigas, H. Hinrikus, R. Kattai, and J. Lass, Self-mixing in a diode laser as a method for cardiovascular diagnostics. J. Biomed. Opt. 2003; 8(1): 152–160.
- 28A. G. Mignani and F. Baldini, Biomedical sensors using optical fibres. Rep. Progr. Phys. 1996; 59: 1–28.
- 29R. Tabrizchi and M. K. Pugsley, Methods of blood flow measurement in the arterial circulatory system. J. Pharmacol. Toxicol. Methods. 2000; 44(2): 375–384.
- 30Moor Instruments. [Online]. Available: http://www.moor.co.uk/f_aboutus.htm, Accessed September 15, 2005.
- 31Perimed. [Online]. Available: http://www.perimed.se/, Accessed September 15, 2005.
- 32Varian Medical Systems. [Online]. Available: http://www.varian.com/xray/prd016.html, Accessed July 1, 2005.
- 33R. A. Street, J.-P. Lu, and S. R. Ready, New materials and processes for flat panel x-ray detectors. IEE Proceedings-Circuits, Devices and Systems, 2003:250–257.
- 34L. E. Antonuk, J. Yorkston, J. Boudry, M. J. Longo, and R. A. Street, Large area amorphous silicon photodiode arrays for radiotherapy and diagnostic imaging. Nucl. Instrum. Methods Phys. Res. A. 1991; 310(1–2): 460–464.
- 35N. G. Chen, M. Huang, H. Xia, and D. Piao, Portable near-infrared diffusive light imager for breast cancer detection. J. Biomed. Opt. 2004; 9(3): 504–510.
- 36A. P. Gibson, J. C. Hebden, and S. R. Arridge, Recent advances in diffuse optical imaging. Phys. Med. Biol. 2005; 50: R1–R43.
- 37A. G. Yodh and D. A. Boss Functional imaging with diffusing light. In: T. Vo-Dinh, ed., Biomedical Photonics Handbook Boca Raton: CRC Press, 2003, ch. 21.
- 38R. Srinivasan, D. Kumar, and M. Singh, Optical characterization and imaging of biological tissues. Curr. Sci 2004; 87(2): 218–227.
- 39C. H. Schultz, M. Löcker, J. Lasker, A. H. Hielscher, and R. L. Barbour, Performance characteristics of a silicon photodiode (SiPD) based instrument for fast functional optical tomography. SPIE Proc. 2001; 4250: 171–179.
10.1117/12.434488 Google Scholar
- 40J. H. Nieuwenhuis, J. Bastemeijer, A. Bossche, and M. J. Vellekoop, Near-field optical sensors for particle shape measurements. IEEE Sensors J. 2003; 3(5): 646–651.
- 41E. Zrenner, A. Stett, S. Weiss, R. B. Aramant, E. Guenther, K. Kohler, K.-D. Miliczek, M. J. Seiler, and H. Haemmerle, Can subretinal microphotodiodes successfully replace degenerated photoreceptors? Vision Res. 1999; 39: 2555–2567.
- 42N. S. Peachey and A. Y. Chow, Subretinal implantation of semiconductor-based photodiodes: progress and challenges. J. Rehabil. Eng. 1999; 36(4): 371–376.
- 43H. Hämmerle, K. Kobuch, K. Kohler, W. Nisch, H. Sachs, and M. Stelzle, Biostability of micro-photodiode arrays for subretinal implantation. Biomaterials 2002; 23: 797–804.
- 44A. Y. Chow, M. T. Pardue, J. I. Perlman, S. L. Ball, V. Y. Chow, J. R. Hetling, G. A. Peyman, C. Liang, E. B. Stubbs, and N. S. Peachey, Subretinal implantation of semiconductor-based photodiodes: durability of novel implant designs. J. Rehabil. Res. Develop. 2002; 39(3): 313–322.
- 45M. B. Schubert, A. Hierzenberger, H. J. Lehner, and J. H. Werner, Optimizing photodiode arrays for the use as retinal implants. Sens. Actuators. A. 1999; 74: 193–197.
- 46V. Namasivayam, R. Lin, B. Johnson, S. Brahmasandra, Z. Razzacki, D. T. Burke, and M. A. Burns, Advances in on-chip photodetection for applications in miniaturized genetic analysis systems. J. Micromech. Microeng. 2004; 14: 81–90.
- 47E. Thrush, O. Levi, W. Ha, G. Carey, L. J. Cook, J. Deich, S. J. Smith, W. E. Moerner, and J. S. Harris, Jr., Integrated semiconductor vertical-cavity surface-emitting lasers and PIN photodetectors for biomedical fluorescence sensing. IEEE J. Quantum Electron. 2004; 40(5): 491–498.
- 48Y. C. Tung, M. Zhang, C. T. Lin, K. Kurabayashi, and S. J. Skerlos, PDMS-based opto-fluidic micro flow cytometer with two-color multi-angle fluorescence detection capability using PIN photodiodes. Sens. Actuators B. 2004; 98: 356–367.
- 49R. Webster, M. A. Burns, D. T. Burke, and C. H. Mastrangelo, Monolithic capillary electrophoresis device with integrated fluorescence detector. Analyt. Chem. 2001; 73(7): 1622–1626.
- 50M. M. Mya, R. K. Saxena, A. Roy, and K. B. Rpy, Design and development of an immunosensor for the detection of malaria in filed conditions. Parasitol Res. 2003; 89: 371–374.
- 51Y. T. Hsueh, R. L. Smith, and M. A. Northrup, A microfabricated electrochemiluminescence cell for the detection of amplified DNA. Sens. Actuators B 1996; 33: 110–114.
- 52E. L. Hostis, Ph. E. Michel, G. C. Fiaccabrino, D. J. Strike, N. F. de Rooji, and M. Koudelka-Hep, Microreactor and electrochemical detectors fabricated using Si and EPON SU-8. Sens. Actuators B. 2000; 64: 156–162.
- 53J. Krüger, K. Singh, A. O’Neill, C. Jackson, A. Morrison, and P. O’Brien, Development of a microfluidic device for fluorescence activated cell sorting. J. Micromech. Microeng. 2002; 12: 486–494.
- 54L. Cui, T. Zhang, and H. Morgan, Optical particle detection integrated in a dielectrophoretic lab-on-a-chip. J. Micromech. Microeng. 2002; 12: 7–12.