Biological Neural Control
Norberto M. Grzywacz
University of Southern California, Los Angeles, California
Search for more papers by this authorMónica Padilla
University of Southern California, Los Angeles, California
Search for more papers by this authorNorberto M. Grzywacz
University of Southern California, Los Angeles, California
Search for more papers by this authorMónica Padilla
University of Southern California, Los Angeles, California
Search for more papers by this authorAbstract
Neural control refers to the manipulation of inputs to particular structures of the nervous system to cause desirable output behavior. There are two kinds of neural control mechanisms, namely, closed loop and open loop. As an example of the former, the hypothalamus receives sensory information from the body to control its temperature. If the environmental temperature rises, then the hypothalamus makes the skin sweat to cool the body. This temperature control is called closed loop, because after the output behavior is modified, new sensory data are taken to see whether the output behavior should be increased or reduced. Hence, closed-loop neural control depends on feedback information about the effects of output behavior. In contrast, the nervous system can sometimes perform open-loop control. This form of control does not rely on feedback to correct erroneous outputs, and thus, the nervous system must rely on knowledge of system behavior to compute its output. Therefore, open-loop neural control requires accurate models of the system. Although such control can be less precise, it has the advantage of speed, because it does not require feedback for computations. One example of open-loop neural control occurs in the first 100 ms of the eye trying to do smooth pursuit of a target in the visual field. This period of pursuit is open loop, because no visual feedback is available because of the delays in the visual system. Thereafter, visual feedback (and other sources of information) is available to close the loop, which improves performance.
Bibliography
- 1J. R. Lackner and P. A. DiZio, Aspects of body self-calibration. Trends Cogn. Sci. 2004; 4(7): 279–288.
- 2E. R. Kandel, J. H. Schwartz, and T. M. Jessell, Principles of Neural Science. 4th ed. New York: McGraw-Hill, 2000.
- 3V. Torre, J. F. Ashmore, T. D. Lamb, and A. Menini, Transduction and adaptation in sensory receptor cells. J. Neurosci. 1995; 15(120): 7757–7768.
- 4U. Hillenbrand and J. L. Van Hemmen, Adaptation in the corticothalamic loop: computational prospects of tuning the senses. Phil. Trans. R. Soc. Lond. 2002; 357: 1859–1867.
- 5C. W. G. Clifford and M. R. Ibbotson, Fundamental mechanisms of visual motion detection: modles, cells and functions. Prog. Neurobiol. 2003; 68: 409–437.
- 6H. Tabata, K. Yamamoto, and M. Kawato, Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory. J. Neurophysiol. 2002; 87: 2176–2189.
- 7A. Reeves, Vision adaptation. In: L. M. Chalupa and J. S. Werner, eds., The Visual Neurosciences. Cambridge, MA: The MIT Press, 2004, pp. 851–863.
- 8M. A. Webster, Pattern-selective adaptation in color and form perception. In: L. M. Chalupa and J. S. Werner, eds., The Visual Neurosciences. Cambridge, MA: The MIT Press, 2004, pp. 936–947.
- 9S. Yantis, Visual Perception: Essential Readings. London: Psychology Press, 2001, pp. 172–189.
- 10R. M. Berne and M. N. Levy, Physiology. 3rd ed. St. Louis, Mosby Yearbook, 1993.
- 11L. L. Bellinger and L. L. Bernardis, The dorsomedial hyphotalamic nucleus and its role in ingestive behavior and body weight regulation: lessons learned from lesioning studies. Physiol. Behav. 2002; 76: 431–442.
- 12D. O. Hebb, The Organization of Behavior: A Neuropsychological Theory. New York: Wiley, 1949.
- 13L. M. Chalupa and E. Gunhan, Development of on and off retinal pathways and retinogeniculate projections. Prog. Retinal Eye Res. 2004; 23: 31–51.
- 14U. Guha, W. A. Gomes, J. Samanta, M. Gupta, F. L. Rice, and J. A. Kessler, Target-derived BMP signaling limits sensory neuron number and the extent of peripheral innervation in vivo. Development 2004; 131(5): 1175–1186.
- 15J. A. K. Suykens and H. Bersini, Neural control theory: an overview. J. Control (special issue). 1996; 96(3): 4–10.
- 16J. A. K. Suykens, J. Vandewalle, and B. De Moor, Artificial Neural Networks for Modelling and Control of Non-Linear Systems, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1996.
10.1007/978-1-4757-2493-6 Google Scholar
- 17A. G. Barto, R. S. Sutton, and C. W. Anderson, Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybernet. 1983; SMC- 13(5): 834–846.
- 18K. S. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural networks. IEEE Trans. Neural Networks. 1990; 1(1): 4–27.
- 19K. S. Narendra and K. Parthasarathy, Gradient methods for the optimization of dynamical systems containing neural networks. IEEE Trans. Neural Networks. 1991; 2(2): 252–262.
- 20P. Werbos, Minimisation methods for training feedforward neural networks. Neural Networks. 1990; 7(1): 1–11.
- 21D. A. Robinson, Integrating with neurons. Annu. Rev. Neurosci. 1989; 12: 33–45.
- 22A. E. Bryson and Y-C. Ho, Applied Optimal Control; Optimization, Estimation and Control. Waltham, MA: Blaisdell Pub. Co., 1969.
- 23B. Hille, Ionic Channels of Excitable Membranes. 2nd ed. Sunderland, MA: Sinauer Associates Inc. Publishers, 1992.
- 24J. G. Nicholls, A. R. Martin, and B. G. Wallace, From Neuron to Brain. 3rd ed. Sunderland, MA: Sinauer Associates Inc. Publishers, 1992, pp. 93–99.
- 25R. M. Berne and M. N. Levy, Cardiovascular Physiology. 6th ed. St Louis, MO: Mosby Yearbook, 1992.
- 26F. Brocard and R. Dubuc, Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. J. Neurophysiol. 2003; 90: 1714–1727.
- 27M. Rabinovich, A. Selverston, L. Rubchinsky, and R. Huerta, Dynamics and kinematics of simple neural systems. Chaos. 1996; 6(3): 288–296.
- 28A. A. V. Hill, M. A. Masino, and R. L. Calabrese, Intersegmental coordination of rhythmic motor patterns. J. Neurophysiol. 2003; 90: 531–538.
- 29R. Jung, T. Kiemel, and A. H. Cohen, Dynamic behavior of a neural network model of locomotor control in the lamprey. J. Neurophysiol. 1996; 75(3): 1074–1086.
- 30J. Thorson and M. Biederman-Thorson, Distributed relaxation processes in sensory adaptation. Science 1974; 183: 161–172.
- 31S. B. Laughlin, The role of sensory adaptation in the retina. J. Exp. Biol. 1989; 146: 39–62.
- 32N. M. Grzywacz and R. M. Balboa, A Bayesian framework for sensory adaptation. Neural Computat. 2002; 14: 543–559.
- 33N. M. Grzywacz and J. de Juan, Sensory adaptation as Kalman filtering: theory and illustration with contrast adaptation. Network: Comput. Neural Syst. 2003; 14: 465–482.
- 34P. Y. Burgi, A. L. Yuille, and N. M. Grzywacz, Probabilistic motion estimation based on temporal coherence. Neural Comput. 2000; 12: 1839–1867.
- 35Y-C. Ho and R. C. K. Lee, A Bayesian approach to problems in stochastic estimation and control. IEEE Trans. Automat. Control. 1964; 9: 333–339.
- 36J. O. Berger, Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag, 1985.
- 37R. M. Balboa and N. M. Grzywacz, The role of early retinal lateral inhibition: more than maximizing luminance information. Visual Neurosci. 2000; 17: 77–89.
- 38R. M. Balboa and N. M. Grzywacz, The minimal local-asperity hypothesis of early retinal lateral inhibition. Neural Computat. 2000; 12: 1485–1517.
- 39F. Rosenblatt, Principles of Neurodynamics: Perceptron and Theory of Brain Mechanisms. Washington, DC: Spartan Books, 1962.
- 40M. Minsky and S. Papert, Perceptrons. Cambridge, MA, MIT Press, 1969.
- 41Y. LeCun, Learning Processes in an Asymmetric Threshold Network. Disordered Systems and Biological Organizations. Les Houches, France: Springer, 1986, pp. 233–240.
10.1007/978-3-642-82657-3_24 Google Scholar
- 42D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Learning Internal Representation by Error Propagation. Parallel Distributed Processing: Explorations in Macrostructure of Cognition, vol. I. Cambridge, MA: Badford Books, 1986, pp. 318–362.
- 43C. M. Bishop, Neural Networks for Pattern Recognition. Oxford, UK: Oxford University Press, 1995.
10.1093/oso/9780198538493.001.0001 Google Scholar
- 44D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A learning algorithm for Boltzmann machines. Cognit. Sci. 1985; 9: 147–169.
- 45P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. Cambridge, MA: MIT Press, 2001.
- 46J. Hopfield, Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. USA 1982; 79(8): 2554–2558.
- 47V. D. Malsburg, Self-organization of orientation sensitive cells in the striate cortex. C. Kybernetik. 1973; 14: 85–100.
- 48C. Dang, Y. Leung, X. B. Gao, and K. Z. Chen, Neural networks for nonlinear and mixed complementary problems and their applications. Neural Networks 2004; 17(2): 271–283.
- 49S. Grossberg, Adaptive pattern classification and universal recoding: I. parallel development and coding of neural feature detectors. Biologic. Cybernet. 1976; 23: 121–134.
- 50M. Stodolski, P. Bojarczak, and S. Oswski, Fast second order learning algorithm for feedforward multilayer neural nerworks and its applications. Neural Networks 1996; 9(9): 1583–1596.
- 51V. N. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New York: Springer-Verlag, 2000.
10.1007/978-1-4757-3264-1 Google Scholar
- 52T. Poggio and F. Girosi, Regularization algorithms for learning that are equivalent to multilayer networks. Science 1990. 247: 978–982.
- 53H. Abdi, Linear algebra for neural networks. In: N. J. Smelter, and P. B. Baltes eds., Encyclopedia of the Social and Behavioral Sciences. London, UK: Elsevier Science, 2001.
- 54K. P. Kording and D. M. Wolpert, Bayesian integration in sensorimotor learning. Nature 2004; 427(6971): 244–247.
- 55B.A. Dosher, Z. L. Lu, Mechanisms of perceptual learning. Vision Res. 1999; 39: 3197–3221.
- 56T. Saffell and N. Matthews, Task-specific perceptual learning on speed and direction discrimination. Vision Res. 2003; 43: 1365–1374.
- 57M. Padilla and N. M. Grzywacz, Perceptual learning in a motion-segmentation task. in preparation.
- 58M. Ahissar and S. Hochstein, Task difficulty and the specificity of perceptual learning. Nature 1997; 387: 401–406.
- 59Z. Liu and D. Weinshall, Mechanisms of generalization in perceptual learning. Vision Res. 2000; 40: 97–109.
- 60V. S. Ramachandran and O. Braddick, Orientation-specific learning in stereopsis. Perception 1976; 2: 371–376.
- 61A. N. Tikhonov, On solving ill-posed problem and method of regularization. Doklady Akademii Nauk USSR. 1963; 153: 501–504.
- 62E. Parzen, An approach to time series analysis. Ann. Math. Statist. 1961; 32: 951–989.
- 63T. Poggio and S. Smale, The mathematics of learning: dealing with data. Notices the AMS, 2003; 50(5): 537–544.
- 64C. Cortes and V. Vapnik, Support vector networks. Machine Learn. 1995; 20: 1–25.