Semiconductor-Based Implantable Prosthetic Devices
Wentai Liu
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorMohanasankar Sivaprakasam
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorGuoxing Wang
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorMingcui Zhou
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorMark S. Humayun
University of Southern California, Department of Ophthalmology, Los Angeles, California
Search for more papers by this authorWentai Liu
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorMohanasankar Sivaprakasam
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorGuoxing Wang
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorMingcui Zhou
University of California, Department of Electrical Engineering, Santa Cruz, California
Search for more papers by this authorMark S. Humayun
University of Southern California, Department of Ophthalmology, Los Angeles, California
Search for more papers by this authorAbstract
Semiconductor-based Implantable Prosthetic Devices are artificial devices embedded into the body to replace/rectify a functionality of a part of the body. The devices function as prosthetic devices by the operation of electronics, which is their core. This chapter describes such devices with specific emphasis to the design and functioning of the electronics. The chapter begins with an overview of existing implantable devices, both commercialized and those under development. The components of a generic implantable prosthetic device are described leading to a detailed discussion of the major components in the continuing sections. Design examples will be presented from an implantable retinal prosthetic device under development for replacing lost vision. The concluding section of the chapter presents a discussion on the challenges and future direction of these implantable devices.
Bibliography
- 1R. S. Sanders and M. T. Lee, Implantable pacemakers. Proc. IEEE 1996; 84(3): 480–486.
- 2J. A. Warren, R. D. Dreher, R. V. Jaworski, J. J. Putzke, and R. J. Russie, Implantable cardioverter defibrillators. Proc. IEEE 1996; 84(3): 468–479.
- 3F. A. Spelman, The past, present, and future of cochlear prostheses. IEEE Engineer. Med. Biol. Mag. 1999; 18(3): 27–33.
- 4S. A. O'Connor, Vagus nerve stimulation as an adjunctive therapy in the treatment of patients with medically intractable epilepsy. IEE Colloquium Electric. Engineer. Epilepsy: A Successful Partnership (Ref. No. 1998/444), June 8, 1998, pp. 9/1–9/4.
- 5J. M. Carmena, M. A. Lebedev, R. E. Crist, J. E. O'Doherty, D. M. Santucci, D. Dimitrov, P. G. Patil, C. S. Henriquez, and M. A. Nicolelis, Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 2003; 1: 193–208.
- 6D. M. Taylor, S. I. Tillary, and A. B. Schwartz, Direct cortical control of 3D neuroprosthetic devices. Science 2002; 296: 1828–1832.
- 7M. Humayun, R. J. Greenberg, B. V. Mech, D. Yanai, M. Mahadevappa, G. van Boemel, G. Y. Fujii, J. D. Weiland, and E. de Juan, Jr., Chronically implanted intraocular retinal prosthesis in two blind subjects. Proc. ARVO Annual Meeting, April, 2003.
- 8W. Liu and M. S. Humayun, Retinal prosthesis. IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, 2004, pp. 218–219.
- 9J. C. Schuder, W. C. McDaniel, H. Stoeckle, M. Dbeis, and G. C. Flaker, General superiority of biphasic over uniphasic shocks in cardiac defibrillation. Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1988; 1: 204–205.
- 10S. Robin, M. Sawan, J. F. Harvey, M. Abdel-Gawad, T. M. Abdel-Baky, and M. M. Elhilai, A new implantable microstimulator dedicated to selective stimulation of the bladder. Proc. Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1997; 4: 1792–1795.
- 11B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, A single-channel implantable microstimulator for functional neuromuscular stimulation. IEEE Trans. Biomed. Engineer. 1997; 44(10): 909–920.
- 12K. E. Jones and R. A. Normann, An advanced demultiplexing system for physiological stimulation. IEEE Trans. Biomed. Engineer. 1997; 44(12): 1210–1220.
- 13S. C. DeMarco, W. Liu, P. R. Singh, G. Lazzi, M. S. Humayun, and J. D. Weiland, An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC. IEEE J. Solid-State Circuits 2003; 38(10): 1679–1690.
- 14P. R. Singh, W. Liu, M. Sivaprakasam, M. S. Humayun, and J. D. Weiland, A matched biphasic microstimulator for an implantable retinal prosthetic device. Proc. International Symposium on Circuits and Systems 2004; 4: 1–4.
- 15S. C. DeMarco, The architecture, design, and electromagnetic and thermal modeling of a retinal prosthesis to benefit the visually impaired, Ph.D. thesis, North Carolina State University, Raleigh, NC, 2001.
- 16M. Sivaprakasam, W. Liu, M. S. Humayun, and J. D. Weiland, A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device. Submitted to IEEE J. Solid-State Circuits.
- 17L. Rucker and A. Lossinsky, Percutaneous connectors. 30th Neural Prosthesis Workshop, NINDS, NINCD, NIH, October 12–14, 1999.
- 18R. S. Sanders and M. T. Lee, Implantable pacemakers. Proc. IEEE 1996; 84: 480–486.
- 19H. McDermott, An advanced multiple channel cochlear implant. IEEE Trans. Biomed. Engineer. 1989; 36: 789–797.
- 20M. Gross, R. Buss, K. Kohler, J. Schaub, and D. Jager, Optical signal and energy transmission for a retina implant. Proc. First Joint BMES/EMBS Conference, 1999; 1:476.
- 21S. G. MacDonald, Biothermal power source for implantable devices. U.S. Patent 6,640,137, 2003.
- 22G. A. Justin, Y. Zhang, R. Sclabassi, and M. Sun, Biofuel cells as a possible power source for implantable electronic devices. Proc. IEEE 30th Annual Northeast Bioengineering Conference, April 2004, pp. 45–46.
- 23N. O. Sokal, RF power amplifiers, classes A through S-how they operate, and when to use each. Electronics Industries Forum of New England, Professional Program Proceedings, May 1997, pp. 179–252.
- 24M. K. Kazimierczuk and K. Puczko, Exact analysis of class E tuned power amplifier at any Q and switch duty cycle. IEEE Trans. Circuits Syst. 1987; 34(2).
- 25Z. Tang, A multichannel implantable stimulation and telemetry system for neuromuscular control, Ph.D. dissertation, Case Western Reserve University, Cleveland, OH, 1997.
- 26G. Wang, W. Liu, M. Sivaprakasam, and G. A. Kendir, Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants. Submitted to IEEE Trans. Circuits Systems-I.
- 27Y. Zilberman and T. Santogrossi, Back-telemetry and the Clarion cochlear prosthesis. Ann. Otol. Rhinol. Laryngol. 1995: 146–147.
- 28P. R. Troyk, I. E. Brown, W. H. Moore, and G. E. Loeb, Development of BION technology for functional electrical stimulation: bidirectional telemetry. Proc. 23rd Annual International Conf. IEEE Engineering in Medicine and Biology Society 2001; 2: 1317–1320.
- 29C. M. Zierhofer, I. J. Hochmair-Desoyer, and E. S. Hochmair, Electronic design of a cochlear implant for multichannel high-rate pulsatile stimulation strategies. IEEE Trans. Rehab. Engineer. 1995; 3(1): 112–116.
10.1109/86.372900 Google Scholar
- 30M. Takahashi, K. Watanabe, F. Sato, and H. Matsuki, Signal transmission system for high frequency magnetic telemetry for an artificial heart. IEEE Trans. Magnet. 2001; 37(4): 2921–2924.
- 31Z. Tang, B. Smith, J. H. Schild, and P. H. Peckham, Data transmission from an implantable biotelemeter by load-shift keying using circuit configuration modulator. IEEE Trans. Biomed. Engineer. 1995; 42(5): 524–528.
- 32R. Bashirullah, W. Liu, Y. Ji, A. Kendir, M. Sivaprakasam, G. Wang, and B. Pundi, A smart bi-directional telemetry unit for retinal prosthetic device. Proc. Int. Sympos. Circuits Syst. 2003; 5: 5–8.
- 33W. Liu, K. Vichienchom, M. Clements, S. C. DeMarco, C. Hughes, E. McGucken, M. S. Humayun, E. de Juan, J. D. Weiland, and R. Greenberg, A neuro-stimulus chip with telemetry unit for retinal prosthetic device. IEEE J. Solid-State Circuit 2000; 35(10): 1487–1497.
- 34J. B. Park and R. S. Lakes, Biomaterials: An Introduction, 2nd ed. New York: Plenum Press, 1992.
- 35R. W. Thomas, Moisture, myth and microcircuits. IEEE Trans. Parts, Hybrid, Packag. 1976; 12(3): 167–171.
- 36K. D. Wise, D. J. Anderson, J. F. Hetke, D. R. Kipke, and K. Najafi, Wireless implantable microsystems: high-density electronic interfaces to the nervous system. Proc. IEEE 2004; 92(1): 76–97.
- 37A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems (1996). Center for Devices and Radiological Health—U.S. Food and Drug Administration (online). Available: http://www.fda.gov/cdrh/ode/primerf6.html.
- 38FDA Public Health Notification: Diathermy Interactions with Implanted Leads and Implanted Systems with Leads. (2002). Center for Devices and Radiological Health—U.S. Food and Drug Administration (online). Available: http://www.fda.gov/cdrh/safety/121902.html.
- 39 IEEE Std. C95.1. 1999, IEEE Standard for Safety Levels With Respect to Human Exposure to Radiofrequency Electromagnetic Fields, 3 kHz to 30 GHz. Piscataways, NJ: IEEE Press.
- 40 International Commission on Non-Ionizing Radiation Protection, Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields. Health Phys. 1998; 74: 494–522.
- 41O. P. Gandhi, Electromagnetic fields: human safety issues. Annu. Rev. Biomed. Eng. 2002; 4: 211–234.
- 42R. E. Schlegel and F. H. Grant, Wireless phones and cardiac pacemakers: in vitro interaction study. Proc. 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 1997; 6: 2551–2554.