Cardiac Hypertrophy
Abstract
Cardiac hypertrophy is a common response of the heart to all forms of stress, whether internal, such as a genetic defect in hypertrophic cardiomyopathy (HCM), or external, such as increased afterload in hypertension. It is diagnosed commonly on an electrocardiogram or an echocardiogram showing increased cardiac mass. A diverse array of stimuli could induce cardiac hypertrophy, including physiological stimuli such as exercise, which induces physiological hypertrophy that is beneficial for cardiac function. In contrast, pathological hypertrophy is responsible for diastolic heart failure and is associated with increased morbidity and mortality. Pathogenesis of cardiac hypertrophy entails sensing the stress through transmembrane, nuclear, or cytoplasmic receptors followed by activation of a cascade of signal transducers that ultimately enter the nucleus and activate gene transcription and expression, protein synthesis, cellular organization, and hypertrophy.
Genetic factors are important determinants of cardiac hypertrophy. HCM is the prototype of genetic cardiac hypertrophy and is caused by mutations in contractile sarcomeric proteins. It is the most common cause of sudden cardiac death in the young, particularly young competitive athletes, and a major cause of morbidity in elderly. Genetic factors also influence the magnitude of hypertrophic response in acquired cardiac hypertrophy. Clinical studies in humans and experimental studies in animals show that hypertrophy is reversible on removal of the primary stimulus (such as treatment of hypertension or replacement of a stenotic valve) or through blockade of signal mediators that are essential for cardiac hypertrophic response. Regression of cardiac hypertrophy is associated with significant improvement in cardiovascular mortality and morbidity.
Bibliography
- 1S. K. Tam, W. Gu, V. Mahdavi et al., Cardiac myocyte terminal differentiation. Potential for cardiac regeneration. Ann. N Y Acad. Sci. 1995; 752: 72–79.
- 2A. J. Marian and R. Roberts, The molecular biology of cardiac abnormalities in athletes. In: R. A. Williams, ed., The Athlete and Heart Disease: Diagnosis, Evaluation & Management. Philadelphia, PA: Lippincott Williams and Wilkins, 1999; pp. 53–67.
- 3D. Levy, R. J. Garrison, D. D. Savage et al., Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N. Engl. J. Med. 1990; 322: 1561–1566.
- 4I. Manabe, T. Shindo, and R. Nagai, Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ. Res. 2002; 91: 1103–1113.
- 5P. Assayag, F. Carre, B. Chevalier et al., Compensated cardiac hypertrophy: arrhythmogenicity and the new myocardial phenotype. I. Fibrosis. Cardiovasc. Res. 1997; 34: 439–444.
- 6B. S. Burlew and K. T. Weber, Cardiac fibrosis as a cause of diastolic dysfunction. Herz. 2002; 27: 92–98.
- 7K. Mizushige, L. Yao, T. Noma et al., Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 2000; 101: 899–907.
- 8C. B. Granger, M. K. Karimeddini, V. E. Smith et al., Rapid ventricular filling in left ventricular hypertrophy: I. Physiologic hypertrophy. J. Am. Coll. Cardiol. 1985; 5: 862–868.
- 9P. M. Okin, M. J. Roman, R. B. Devereux et al., Electrocardiographic identification of increased left ventricular mass by simple voltage-duration products. J. Am. Coll. Cardiol. 1995; 25: 417–423.
- 10R. B. Devereux, P. N. Casale, R. R. Eisenberg et al., Electrocardiographic detection of left ventricular hypertrophy using echocardiographic determination of left ventricular mass as the reference standard. Comparison of standard criteria, computer diagnosis and physician interpretation. J. Am. Coll. Cardiol. 1984; 3: 82–87.
- 11D. W. Romhilt and E. H. Estes, Jr., A point-score system for the ECG diagnosis of left ventricular hypertrophy. Am. Heart J. 1968; 75: 752–758.
- 12N. B. Schiller, P. M. Shah, M. Crawford et al., Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American Society of Echocardiography Committee on Standards, Subcommittee on Quantitation of Two-Dimensional Echocardiograms. J. Am. Soc. Echocardiogr. 1989; 2: 358–367.
- 13D. Levy, D. D. Savage, R. J. Garrison et al., Echocardiographic criteria for left ventricular hypertrophy: the Framingham Heart Study. Am. J. Cardiol. 1987; 59: 956–960.
- 14A. Ilercil, M. J. O'Grady, M. J. Roman et al., Reference values for echocardiographic measurements in urban and rural populations of differing ethnicity: the Strong Heart Study. J. Am. Soc. Echocardiogr. 2001; 14: 601–611.
- 15S. G. Myerson, N. G. Bellenger, and D. J. Pennell, Assessment of left ventricular mass by cardiovascular magnetic resonance. Hypertension 2002; 39: 750–755.
- 16C. H. Lorenz, E. S. Walker, V. L. Morgan et al., Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 1999; 1: 7–21.
- 17W. Grossman, D. Jones, and L. P. McLaurin, Wall stress and patterns of hypertrophy in the human left ventricle. J. Clin. Invest. 1975; 56: 56–64.
- 18A. M. Katz, Maladaptive growth in the failing heart: the cardiomyopathy of overload. Cardiovasc. Drugs Ther. 2002; 16: 245–249.
- 19W. C. Brogan III, L. D. Hillis, E. D. Flores et al., The natural history of isolated left ventricular diastolic dysfunction. Am. J. Med. 1992; 92: 627–630.
- 20M. J. Koren, R. B. Devereux, P. N. Casale et al., Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann. Intern. Med. 1991; 114: 345–352.
- 21M. R. Zile and D. L. Brutsaert, New concepts in diastolic dysfunction and diastolic heart failure: Part II: causal mechanisms and treatment. Circulation 2002; 105: 1503–1508.
- 22M. R. Zile and D. L. Brutsaert, New concepts in diastolic dysfunction and diastolic heart failure: Part I: diagnosis, prognosis, and measurements of diastolic function. Circulation 2002; 105: 1387–1393.
- 23R. S. Vasan, M. G. Larson, E. J. Benjamin et al., Congestive heart failure in subjects with normal versus reduced left ventricular ejection fraction: prevalence and mortality in a population-based cohort. J. Am. Coll. Cardiol. 1999; 33: 1948–1955.
- 24J. F. Setaro, R. Soufer, M. S. Remetz et al., Long-term outcome in patients with congestive heart failure and intact systolic left ventricular performance. Am. J. Cardiol. 1992; 69: 1212–1216.
- 25K. W. Judge, Y. Pawitan, J. Caldwell et al., Congestive heart failure symptoms in patients with preserved left ventricular systolic function: analysis of the CASS registry. J. Am. Coll. Cardiol. 1991; 18: 377–382.
- 26B. Swynghedauw, Molecular mechanisms of myocardial remodeling. Physiol. Rev. 1999; 79: 215–262.
- 27S. E. Johnatty, J. R. Dyck, L. H. Michael et al., Identification of genes regulated during mechanical load-induced cardiac hypertrophy. J. Mol. Cell Cardiol. 2000; 32: 805–815.
- 28J. J. Hwang, P. D. Allen, G. C. Tseng et al., Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genom. 2002; 10: 31–44.
- 29C. Hengstenberg and B. Maisch, Increased nuclear proto-oncogene expression in hypertrophic cardiomyopathy. Cardioscience 1993; 4: 15–20.
- 30H. Kai, A. Muraishi, Y. Sugiu et al., Expression of proto-oncogenes and gene mutation of sarcomeric proteins in patients with hypertrophic cardiomyopathy. Circ. Res. 1998; 83: 594–601.
- 31R. K. Li, G. Li, D. A. Mickle et al., Overexpression of transforming growth factor-beta1 and insulin-like growth factor-I in patients with idiopathic hypertrophic cardiomyopathy. Circulation 1997; 96: 874–881.
- 32D. S. Lim, R. Roberts, and A. J. Marian, Expression profiling of cardiac genes in human hypertrophic cardiomyopathy: insight into the pathogenesis of phenotypes. J. Am. Coll. Cardiol. 2001; 38: 1175–1180.
- 33J. Yang, C. S. Moravec, M. A. Sussman et al., Decreased SLIM1 expression and increased gelsolin expression in failing human hearts measured by high-density oligonucleotide arrays. Circulation 2000; 102: 3046–3052.
- 34H. N. Sabbah, V. G. Sharov, R. C. Gupta et al., Reversal of chronic molecular and cellular abnormalities due to heart failure by passive mechanical ventricular containment. Circ. Res. 2003; 93: 1095–1101.
- 35H. Matsui, D. H. MacLennan, N. R. Alpert et al., Sarcoplasmic reticulum gene expression in pressure overload-induced cardiac hypertrophy in rabbit. Am. J. Physiol. 1995; 268: C252–C258.
- 36A. M. Lompre, K. Schwartz, A. d’Albis et al., Myosin isoenzyme redistribution in chronic heart overload. Nature 1979; 282: 105–107.
- 37J. J. Mercadier, A. M. Lompre, C. Wisnewsky et al., Myosin isoenzyme changes in several models of rat cardiac hypertrophy. Circ. Res. 1981; 49: 525–532.
- 38S. Miyata, W. Minobe, M. R. Bristow et al., Myosin heavy chain isoform expression in the failing and nonfailing human heart. Circ. Res. 2000; 86: 386–390.
- 39C. Holubarsch, R. P. Goulette, R. Z. Litten et al., The economy of isometric force development, myosin isoenzyme pattern and myofibrillar ATPase activity in normal and hypothyroid rat myocardium. Circ. Res. 1985; 56: 78–86.
- 40P. A. Anderson, A. Greig, T. M. Mark et al., Molecular basis of human cardiac troponin T isoforms expressed in the developing, adult, and failing heart. Circ. Res. 1995; 76: 681–686.
- 41K. L. Pierce, R. T. Premont, and R. J. Lefkowitz, Seven-transmembrane receptors. Nat. Rev. Mol. Cell Biol. 2002; 3: 639–650.
- 42R. S. Ross and T. K. Borg, Integrins and the myocardium. Circ. Res. 2001; 88: 1112–1119.
- 43D. A. MacKenna, F. Dolfi, K. Vuori et al., Extracellular signal-regulated kinase and c-Jun NH2-terminal kinase activation by mechanical stretch is integrin-dependent and matrix-specific in rat cardiac fibroblasts. J. Clin. Invest. 1998; 101: 301–310.
- 44B. Geiger and A. Bershadsky, Exploring the neighborhood: adhesion-coupled cell mechanosensors. Cell 2002; 110: 139–142.
- 45S. Zhang, C. Weinheimer, M. Courtois et al., The role of the Grb2-p38 MAPK signaling pathway in cardiac hypertrophy and fibrosis. J. Clin. Invest. 2003; 111: 833–841.
- 46T. D. Adams, F. G. Yanowitz, A. G. Fisher et al., Heritability of cardiac size: an echocardiographic and electrocardiographic study of monozygotic and dizygotic twins. Circulation 1985; 71: 39–44.
- 47H. A. Verhaaren, R. M. Schieken, M. Mosteller et al., Bivariate genetic analysis of left ventricular mass and weight in pubertal twins (the Medical College of Virginia twin study). Am. J. Cardiol. 1991; 68: 661–668.
- 48E. Bielen, R. Fagard, and A. Amery, Inheritance of heart structure and physical exercise capacity: a study of left ventricular structure and exercise capacity in 7-year-old twins. Eur. Heart J. 1990; 11: 7–16.
- 49G. A. Harshfield, C. E. Grim, C. Hwang et al., Genetic and environmental influences on echocardiographically determined left ventricular mass in black twins. Am. J. Hypertens. 1990; 3: 538–543.
- 50F. Landry, C. Bouchard, and J. Dumesnil, Cardiac dimension changes with endurance training. Indications of a genotype dependency. JAMA 1985; 254: 77–80.
- 51D. Grimm, E. P. Kromer, W. Bocker et al., Regulation of extracellular matrix proteins in pressure-overload cardiac hypertrophy: effects of angiotensin converting enzyme inhibition. J. Hypertens. 1998; 16: 1345–1355.
- 52W. S. Post, M. G. Larson, R. H. Myers et al., Heritability of left ventricular mass: the Framingham Heart Study. Hypertension 1997; 30: 1025–1028.
- 53H. Schunkert, U. Brockel, C. Hengstenberg et al., Familial predisposition of left ventricular hypertrophy. J. Am. Coll. Cardiol. 1999; 33: 1685–1691.
- 54A. J. Marian and R. Roberts, The molecular genetic basis for hypertrophic cardiomyopathy. J. Mol. Cell Cardiol. 2001; 33: 655–670.
- 55B. J. Maron, J. M. Gardin, J. M. Flack et al., Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 1995; 92: 785–789.
- 56H. Niimura, L. L. Bachinski, S. Sangwatanaroj et al., Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med. 1998; 338: 1248–1257.
- 57S. F. Nagueh, L. Bachinski, D. Meyer et al., Tissue Doppler imaging consistently detects myocardial abnormalities in patients with familial hypertrophic cardiomyopathy and provides a novel means for an early diagnosis prior to an independent of hypertrophy. Circulation 2001; 104: 128–130.
- 58B. J. Maron and W. C. Roberts, Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum of patients with hypertrophic cardiomyopathy. Circulation 1979; 59: 689–706.
- 59J. Shirani, R. Pick, W. C. Roberts et al., Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. J. Am. Coll. Cardiol. 2000; 35: 36–44.
- 60P. Spirito, P. Bellone, K. M. Harris et al., Magnitude of left ventricular hypertrophy and risk of sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med. 2000; 342: 1778–1785.
- 61A. M. Varnava, P. M. Elliott, C. Baboonian et al., Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin t disease. Circulation 2001; 104: 1380–1384.
- 62A. M. Varnava, P. M. Elliott, N. Mahon et al., Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy. Am. J. Cardiol. 2001; 88: 275–279.
- 63C. R. Cannan, G. S. Reeder, K. R. Bailey et al., Natural history of hypertrophic cardiomyopathy. A population-based study, 1976 through 1990. Circulation 1995; 92: 2488–2495.
- 64B. J. Maron, Hypertrophic cardiomyopathy: a systematic review. JAMA 2002; 287: 1308–1320.
- 65B. J. Maron, J. Shirani, L. C. Poliac et al., Sudden death in young competitive athletes. Clinical, demographic, and pathological profiles. JAMA 1996; 276: 199–204.
- 66W. McKenna, J. Deanfield, A. Faruqui et al., Prognosis in hypertrophic cardiomyopathy: role of age and clinical, electrocardiographic and hemodynamic features. Am. J. Cardiol. 1981; 47: 532–538.
- 67M. Arad, J. G. Seidman, and C. E. Seidman, Phenotypic diversity in hypertrophic cardiomyopathy. Hum. Mol. Genet. 2002; 11: 2499–2506.
- 68C. E. Seidman, Hypertrophic Cardiomyopathy: from man to mouse. J. Clin. Invest. 2000; 106: S9–S13.
- 69C. E. Seidman and J. G. Seidman, Molecular genetic studies of familial hypertrophic cardiomyopathy. Basic Res. Cardiol. 1998; 93(Suppl 3): 13–16.
- 70A. J. Marian, On genetic and phenotypic variability of hypertrophic cardiomyopathy: nature versus nurture. J. Am. Coll. Cardiol. 2001; 38: 331–334.
- 71P. Charron, O. Dubourg, M. Desnos et al., Genotype-phenotype correlations in familial hypertrophic cardiomyopathy. A comparison between mutations in the cardiac protein-C and the beta-myosin heavy chain genes. Eur. Heart J. 1998; 19: 139–145.
- 72L. Fananapazir and N. D. Epstein, Genotype-phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical beta-myosin heavy chain gene mutations. Circulation 1994; 89: 22–32.
- 73J. Erdmann, J. Raible, J. Maki-Abadi et al., Spectrum of clinical phenotypes and gene variants in cardiac myosin-binding protein C mutation carriers with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 2001; 38: 322–330.
- 74H. Watkins, W. J. McKenna, L. Thierfelder et al., Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 1995; 332: 1058–1064.
- 75A. J. Marian, Q. T. Yu, R. Workman et al., Angiotensin-converting enzyme polymorphism in hypertrophic cardiomyopathy and sudden cardiac death. Lancet 1993; 342: 1085–1086.
- 76M. Lechin, M. A. Quinones, A. Omran et al., Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 1995; 92: 1808–1812.
- 77F. Tesson, C. Dufour, J. C. Moolman et al., The influence of the angiotensin I converting enzyme genotype in familial hypertrophic cardiomyopathy varies with the disease gene mutation. J. Mol. Cell Cardiol. 1997; 29: 831–838.
- 78A. Pfeufer, K. J. Osterziel, H. Urata et al., Angiotensin-converting enzyme and heart chymase gene polymorphisms in hypertrophic cardiomyopathy. Am. J. Cardiol. 1996; 78: 362–364.
- 79J. R. Ortlepp, H. P. Vosberg, S. Reith et al., Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: a study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart 2002; 87: 270–275.
- 80R. Brugada, W. Kelsey, M. Lechin et al., Role of candidate modifier genes on the phenotypic expression of hypertrophy in patients with hypertrophic cardiomyopathy. J. Investig. Med. 1997; 45: 542–551.
- 81R. Patel, D. S. Lim, D. Reddy et al., Variants of trophic factors and expression of cardiac hypertrophy in patients with hypertrophic cardiomyopathy. J. Mol. Cell Cardiol. 2000; 32: 2369–2377.
- 82A. J. Marian, Modifier genes for hypertrophic cardiomyopathy. Curr. Opin. Cardiol. 2002; 17: 242–252.
- 83C. J. Cummings and H. Y. Zoghbi, Trinucleotide repeats: mechanisms and pathophysiology. Annu. Rev. Genom. Hum. Genet. 2000; 1: 281–328.
- 84Z. Korade-Mirnics, P. Babitzke, and E. Hoffman, Myotonic dystrophy: molecular windows on a complex etiology. Nucleic Acids Res. 1998; 26: 1363–1368.
- 85M. F. Phillips and P. S. Harper, Cardiac disease in myotonic dystrophy. Cardiovasc. Res. 1997; 33: 13–22.
- 86A. J. Marian, Genetics for Cardiologists, 1st ed. London, UK: REMEDICA Publishing, 2000.
- 87F. Palau, Friedreich's ataxia and frataxin: molecular genetics, evolution and pathogenesis. Int. J. Mol. Med. 2001; 7: 581–589.
- 88N. Bit-Avragim, A. Perrot, L. Schols et al., The GAA repeat expansion in intron 1 of the frataxin gene is related to the severity of cardiac manifestation in patients with Friedreich's ataxia. J. Mol. Med. 2001; 78: 626–632.
- 89M. Tartaglia, E. L. Mehler, R. Goldberg et al., Mutations in PTPN11, encoding the protein tyrosine phosphatase SHP-2, cause Noonan syndrome. Nat. Genet. 2001; 29: 465–468.
- 90M. Tartaglia, K. Kalidas, A. Shaw et al., PTPN11 mutations in Noonan syndrome: molecular spectrum, genotype-phenotype correlation, and phenotypic heterogeneity. Am. J. Hum. Genet. 2002; 70: 1555–1563.
- 91S. J. Mihalik, J. C. Morrell, D. Kim et al., Identification of PAHX, a Refsum disease gene. Nat. Genet. 1997; 17: 185–189.
- 92G. A. Jansen, R. Ofman, S. Ferdinandusse et al., Refsum disease is caused by mutations in the phytanoyl-CoA hydroxylase gene. Nat. Genet. 1997; 17: 190–193.
- 93N. Raben, P. Plotz, and B. J. Byrne, Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr. Mol. Med. 2002; 2: 145–166.
- 94N. Raben, P. Plotz, and B. J. Byrne, Acid alpha-glucosidase deficiency (glycogenosis type II, Pompe disease). Curr. Mol. Med. 2002; 2: 145–166.
- 95A. Amalfitano, A. J. McVie-Wylie, H. Hu et al., Systemic correction of the muscle disorder glycogen storage disease type II after hepatic targeting of a modified adenovirus vector encoding human acid-alpha-glucosidase. Proc. Natl. Acad. Sci. USA 1999; 96: 8861–8866.
- 96E. Blair, C. Redwood, H. Ashrafian et al., Mutations in the gamma(2) subunit of AMP-activated protein kinase cause familial hypertrophic cardiomyopathy: evidence for the central role of energy compromise in disease pathogenesis. Hum. Mol. Genet. 2001; 10: 1215–1220.
- 97M. H. Gollob, M. S. Green, A. S. Tang et al., Identification of a gene responsible for familial Wolff-Parkinson-White syndrome. N. Engl. J. Med. 2001; 344: 1823–1831.
- 98B. Guertl, C. Noehammer, and G. Hoefler, Metabolic cardiomyopathies. Int. J. Exp. Pathol. 2000; 81: 349–372.
- 99D. K. Simon and D. R. Johns, Mitochondrial disorders: clinical and genetic features. Annu. Rev. Med. 1999; 50: 111–127.
- 100T. Ashizawa and S. H. Subramony, What is Kearns-Sayre syndrome after all? Arch. Neurol. 2001; 58: 1053–1054.
- 101D. P. Kelly and A. W. Strauss, Inherited cardiomyopathies. N. Engl. J. Med. 1994; 330: 913–919.
- 102E. S. Monrad, O. M. Hess, T. Murakami et al., Time course of regression of left ventricular hypertrophy after aortic valve replacement. Circulation 1988; 77: 1345–1355.
- 103P. M. Okin, R. B. Devereux, S. Jern et al., Regression of electrocardiographic left ventricular hypertrophy by losartan versus atenolol: The Losartan Intervention for Endpoint reduction in Hypertension (LIFE) Study. Circulation 2003; 108: 684–690.
- 104M. J. Koren, R. J. Ulin, A. T. Koren et al., Left ventricular mass change during treatment and outcome in patients with essential hypertension. Am. J. Hypertens. 2002; 15: 1021–1028.
- 105J. Mathew, P. Sleight, E. Lonn et al., Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation 2001; 104: 1615–1621.
- 106R. Patel, S. F. Nagueh, N. Tsybouleva et al., Simvastatin induces regression of cardiac hypertrophy and fibrosis and improves cardiac function in a transgenic rabbit model of human hypertrophic cardiomyopathy. Circulation 2001; 104: 317–324.
- 107M. L. Muiesan, M. Salvetti, D. Rizzoni et al., Association of change in left ventricular mass with prognosis during long-term antihypertensive treatment. J. Hypertens. 1995; 13: 1091–1095.