Dentin
Paulette Spencer
University of Missouri-Kansas City, Department of Oral Biology and Pediatric Dentistry, Kansas City, Missouri
Search for more papers by this authorYong Wang
University of Missouri-Kansas City, Department of Oral Biology and Pediatric Dentistry, Kansas City, Missouri
Search for more papers by this authorJ. Lawrence Katz
University of Missouri-Kansas City, Department of Oral Biology and Pediatric Dentistry, Kansas City, Missouri
Search for more papers by this authorPaulette Spencer
University of Missouri-Kansas City, Department of Oral Biology and Pediatric Dentistry, Kansas City, Missouri
Search for more papers by this authorYong Wang
University of Missouri-Kansas City, Department of Oral Biology and Pediatric Dentistry, Kansas City, Missouri
Search for more papers by this authorJ. Lawrence Katz
University of Missouri-Kansas City, Department of Oral Biology and Pediatric Dentistry, Kansas City, Missouri
Search for more papers by this authorAbstract
Dentin is the hydrated composite structure that constitutes the body of each tooth, providing both a protective covering for the pulp and serving as a support for the overlying enamel. Enamel, with its exceptionally high mineral content, is a very brittle tissue. Without the support of the more resilient dentin structure, enamel is so brittle that it would fracture when exposed to the forces of mastication. Dentin supports as well as compensates for the brittle nature of the enamel.
In contrast to enamel, dentin is a vital tissue containing the cell processes of odontoblasts and neurons. As the odontoblasts can be stimulated to deposit more dentin, this tissue is capable of limited repair. The structure-property relationships of dentin vary with location, physiological, aging, and disease processes. This chapter will review the composition, structure, and properties of the various types of dentin and their effect on current restorative dentistry procedures.
Bibliography
- 1 A. R. Ten Cate, ed., General embryology. Oral Histology. Development, Structure, and Function. St. Louis, MO: Mosby, 2003, p. 29.
- 2H. O. Trowbridge and S. Kim, Pulp development, structure, and function. In: S. Cohen and R. C. Burns, eds., Pathways of the Pulp. St. Louis, MO: Mosby, 1998, pp. 386–389.
- 3N. P. Piesco and J. K. Avery, Development of teeth: crown formation. In: J. K. Avery and P. F. Steele, eds., Oral Development and Histology. New York: Thieme, 2002, p. 74.
- 4N. P. Piesco and J. K. Avery, Development of teeth: crown formation. In: J. K. Avery and P. F. Steele, eds., Oral Development and Histology. New York: Thieme, 2002, p. 88.
- 5C. Qin, J. C. Brunn, R. G. Cook, R. S. Orkiszewski, J. P. Malone, A. Veis, and W. T. Butler, Evidence for the proteolytic processing of dentin matrix protein 1. J. Biologic. Chem. 2003; 278: 34700–34708.
- 6W. T. Butler, J. C. Brunn, C. Qin, and M. D. McKee, Cell differentiation (Cost-WG3) extracellular matrix proteins and the dynamics of dentin formation. Connective Tissue Res. 2002; 43: 301–307.
- 7W. T. Butler, Dentin matrix proteins and dentinogenesis. Connective Tissue Res. 1995; 33: 59–65, 381–387.
- 8A. Linde, Dentin mineralization and the role of odontoblasts in calcium transport. Connective Tissue Res. 1995; 33: 163–170, 485–492.
- 9N. P. Piesco and J. K. Avery, Development of teeth: crown formation. In: J. K. Avery and P. F. Steele, eds., Oral Development and Histology. New York: Thieme, 2002, p. 91.
- 10G. W. Marshall, S. J. Marshall, J. H. Kinney, and M. Balooch, The dentin substrate: structure and properties related to bonding. J. Dent. 1997; 25: 441–458.
- 11W. T. Butler, Dentin extracellular matrix and dentinogenesis. Oper. Dent. Supplement 1992; 5:18–23.
- 12A. R. Ten Cate, Oral Histology. St. Louis, MO: Mosby, 2003, pp. 205–208.
- 13R. Wang and S. Weiner, Human root dentin: structure anistropy and vickers microhardness isotropy. Connective Tissue Res. 1998; 39: 269–279.
- 14S. Weiner, A. Veis, E. Beniash, T. Arad, J. W. Dillon, B. Sabsay, and F. Siddiqui, Peritubular Dentin Formation: crystal organization and the macromolecular constituents in human teeth. J. Structural Biol. 1999; 126: 27–41.
- 15J. H. Kinney, J. A. Pople, G. W. Marshall, and S. J. Marshall, Collagen orientation and crystallite size in human dentin: a small angle x-ray scattering study. Calcified Tissues Int. 2001; 69: 31–37.
- 16J. H. Kinney, M. Balooch, S. J. Marshall, G. W. Marshall, and T. P. Weihs, Atomic farce microscope measurements of the hardness and elasticity of peritubular and intertubular dentin. J. Biomechan. Engineer. 1996; 118: 9–13.
- 17J. H. Kinney, M. Balooch, G. W. Marshall, and S. J. Marshall, A micromechanics model of the elastic properties of human dentine. Arch. Oral Biol. 1999; 44: 813–822.
- 18J. L. Katz, S. Bumrerraj, J. Dreyfuss, Y. Wang, and P. Spencer, Micromechanics of the dentin/adhesive interface. J. Biomed. Mater. Res. (Appl. Biomater.) 2001; 58: 366–371.
- 19J. L. Katz, P. Spencer, T. Nomura, A. Wagh, and Y. Wang, Micromechanical properties of demineralized dentin collagen with and without adhesive infiltration. J. Biomed. Mater. Res. 2003; 66A: 120–128.
- 20J. L. Katz, P. Spencer, Y. Wang, A. Wagh, T. Nomura, and S. Bumrerraj, Structural, chemical and mechanical characterization of the dentin/adhesive interface. In: K. Lewandrowski et al., eds., Tissue Engineering and Biodegradable Equivalents: Scientific and Clinical Applications. New York: Marcel Dekker, 2002, pp. 775–793.
- 21D. H. Pashley, Dentin: a dynamic substrate in dentistry. Scanning Microscopy 1989; 3: 161–176.
- 22N. Nakabayashi and D. H. Pashley, Hybridization of Dental Hard Tissues. Tokyo: Quintessence Publishing Co., 1998.
- 23D. H. Pashley, B. Ciucchi, H. Sano, and J. A. Horner, Permeability of dentin to adhesive agents. Quintessence Int. 1993; 24: 618–631.
- 24T. Yoshikawa, H. Sano, M. F. Burrow, J. Tagami, and D. H. Pashley, Effects of dentin depth and cavity configuration on bond strength. J. Dent. Res. 1999; 78: 898–905.
- 25M. Yoshiyama, R. Carvalho, H. Sano, J. Horner, P. D. Brewer, and D. H. Pashley, Interfacial morphology and strength of bonds made to superficial versus deep dentin. Am. J. Dent. 1995; 8: 297–302.
- 26M. Yoshiyama, R. M. Carvalho, H. Sano, J. A. Horner, P. D. Brewer, and D. H. Pashley, Regional bond strengths of resins to human root dentine. J. Dentistry 1996; 24: 435–442.
- 27G. Daculsi, J.-M. Bouler, and R. Z. LeGerost, Adaptive crystal formation in normal and pathological calcifications in synthetic calcium phosphate and related biomaterials. Int. Rev. Cytol. 1997; 172: 129–191.
- 28R. Z. LeGeros, Calcium phosphates in oral biology and medicine. In: H. M. Meyers, ed., Monographs in Oral Science. Basel: Karger, 1991, p. 121.
- 29A. R. Ten Cate, Oral Histology. St. Louis, MO: Mosby, 2003, pp. 185–186.
- 30C. Lin, W. H. Douglas, and S. L. erlandsen, Scanning electron microscopy of type I collagen at the dentin-enamel junction of human teeth. J. Histochem. Cytochem. 1993; 41: 381–388.
- 31W. Tesch, N. Eidelman, P. Roschger, F. Goldenberg, K. Klaushofer, and P. Fratzl, Graded microstructure and mechanical properties of human crown dentin. Calcified Tissues Int. 2001; 69: 147–157.
- 32S. N. White, M. L. Paine, W. Luo, M. Sarikaya, H. Fong, Z. Yu, Z. C. Li, and M. L. Snead, Dentino-enamel junction is a broad transitional zone uniting dissimilar bioceramic composites. J. Am. Ceram. Soc. 2000; 83: 238–240.
- 33A. Hodzic, Z. H. Stachurski, and J. K. Kim, Nano-indentation of polymer-glass interfaces. Part I: Experimental and mechanical analysis. Polymer 2000; 41: 6895–6905.
- 34G. W. Marshall, Jr., M. Balooch, R. R. Gallagher, S. A. Gansky, and S. J. Marshall, Mechanical properties of the dentinoenamel junction: AFM studies of nanohardness, elastic modulus, and fracture. J. Biomed. Mater. Res. 2001; 54: 87–95.
- 35I. Urabe, S. Nakajima, H. Sano, and J. Tagami, Physical properties of the dentin-enamel junction region. Am. J. Dent. 2000; 13: 129–135.
- 36R. G. Maev, L. A. Denisova, E. Y. Maeva, and A. A. Denissov, New data on histology and physico-mechanical properties of human tooth tissue obtained with acoustic microscopy. Ultrasound Med. Biol. 2002; 28: 131–136.
- 37N. Meredith, M. Sherriff, D. J. Setchell, and S. A. Swanson, Measurement of the microhardness and Young's modulus of human enamel and dentine using an indentation technique. Arch. Oral Biol. 1996; 41: 539–545.
- 38E. WentrupByrne, C. A. Armstrong, R. S. Armstrong, and B. M. Collins, Fourier transform Raman microscopic mapping of the molecular components in a human tooth. J. Raman Spectrosc. 1997; 28: 151–158.
- 39C. P. Lin and W. H. Douglas, Structure-property relations and crack resistance at the bovine dentin-enamel junction. J. Dent. Res. 1994; 73: 1072–1078.
- 40S. T. Rasmussen, Fracture properties of human teeth in proximity to the dentinoenamel junction. J. Dent. Res. 1984; 63: 1279–1283.
- 41H. H. Xu, D. T. Smith, S. Jahanmir, E. Romberg, J. R. Kelly, V. P. Thompson, and E. D. Rekow, Indentation damage and mechanical properties of human enamel and dentin. J. Dent. Res. 1998; 77: 472–480.
- 42J. G. Ma, M. Laberge, A. Z. Song, W. Jentzen, S. L. Jia, J. Zhang, J. M. Vanderkooi, and J. A. Shelnutt, Protein-induced changes in nonplanarity of the porphyrin in nickel cytochrome c probed by resonance Raman spectroscopy. Biochemistry 1998; 37: 5118–5128.
- 43G. W. Marshall, S. Habelitz, R. Gallagher, M. Balooch, G. Balooch, and S. J. Marshall, Nanomechanical properties of hydrated carious human dentin. J. Dent. Res. 2001; 80: 1768–1771.
- 44G. W. Marshall, Jr., Dentin: microstructure and characterization. Quintessence Int. 1993; 24: 606–617.
- 45N. P. Piesco, Histology of dentin. In: J. K. Avery and P. F. Steele, eds., Oral Development and Histology. New York: Thieme, 2002, p. 180.
- 46R. B. Rutherford, Regenertaion of dentin. In: R. P. Lanza, R. Langer, and J. Vacanti, eds., Principles of Tissue Engineering, 2nd ed. Austin, TX: R. G. Landes Company, 1997, p. 847.
- 47O. Tecles, P. Laurent, S. Zygouritsas, A.-S. Burger, J. Camps, J. Dejou, and I. About, Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch. Oral Biol. 2005; 50: 103–108.
- 48A. J. Smith, M. Cassidy, H. Perry, C. Begue-Kirn, J. V. Ruch, and H. Lesot, Reactionary dentinogenesis. Int. J. Development. Biol. 1995; 39: 273–280.
- 49I. A. Mjor, The exposed pulp, In: A. Dichson, ed., Pulp-Dentin Biology in Restorative Dentistry. Carol Stream, IL: Quintessence Publishing Co., 2002, p. 139.
- 50A. R. Ten Cate, Oral Histology. St. Louis, MO: Mosby, 2003, pp. 210–211, 237–238.
- 51F. C. M. Driessens and J. H. M. Woltgens, Tooth Development and Caries. Boca Raton, FL: CRC Press, 1986, pp. 132–137.
- 52M. Nakajima, H. Sano, L. Zheng, J. Tagami, and D. H. Pashley, Effect of moist vs. dry bonding to normal vs. caries-affected dentin with scotchbond multi-purpose plus. J. Dent. Res. 1999; 78: 1298–1303.
- 53A. R. Ten Cate, Oral Histology. Development, Structure, and Function. St. Louis, MO: Mosby, 2003, pp. 406–407.
- 54J. D. Eick, Smear layer—materials surface. Proc. Finn. Dent. Soc. 1992; 88(Suppl. 1): 225–242.
- 55J. D. Eick, R. A. Wilko, C. H. Anderson, and S. Sorenson, Scanning electron microscopy and electron microprobe analysis of cut tooth surfaces. J. Dent. Res. 1970; 49: 1359–1368.
- 56D. H. Pashley, Smear layer: overview of structure and function. Proc. Finn. Dent. Soc. 1992; 88(Suppl. 1): 215–224.
- 57P. Spencer, Y. Wang, M. P. Walker, and J. R. Swafford, Molecular structure of acid-etched dentin smear layers-in situ study. J. Dent. Res. 2001; 80: 1802–1807.
- 58Y. Wang and P. Spencer, Analysis of acid-treated dentin smear debris and smear layers using confocal Raman microspectroscopy. J. Biomed. Mater. Res. 2002; 60: 300–308.
- 59B. G. Frushour and J. L. Koenig, Raman scattering of collagen, gelatin, and elastin. Biopolymers 1975; 14: 379–391.
- 60V. Renugopalakrishnan, L. A. Carreira, T. W. Collette, J. C. Dobbs, G. Chandraksasan, and R. C. Lord, Non-uniform triple helical structure in chick skin type I collagen on thermal denaturation: Raman spectroscopic study. Z. Naturforsch. 1998; 53c: 383–388.
- 61M. F. Chan and J. C. Glynn Jones, A comparison of four in vitro marginal leakage tests applied to root surface restorations. J. Dent. Res. 1992; 20: 287–293.
- 62S. M. Dunne, I. D. Gainsford, and N. H. F. Wilson, Current materials and techniques for direct restorations in posterior teeth. Part 1: silver amalgam. Int. Dent. J. 1997; 47: 123–136.
- 63G. W. Marshall, M. Balloch, R. J. Tench, J. H. Kinney, and S. J. Marshall, Atomic force microscopy of acid effects on dentin. Dent. Mater. 1993; 9: 265–268.
- 64H. Nordbo, J. Leirskar, and F. R. von der Fehr, Saucer-shaped cavity preparations for posterior approximal resin composite restorations: observations up to 10 years. Quintessence Int. 1998; 29: 5–11.
- 65J. C. Meiers and J. Kresin, Cavity disinfectants and dentin bonding. Oper. Dent. 1996; 21: 153–159.
- 66N. Nakabayashi and Y. Saimi, Bonding to intact dentin. J. Dent. Res. 1996; 75: 1706–1715.
- 67H. Sano, T. Yoshikawa, P. N. R. Pereira, N. Kanemura, M. Morigami, J. Tagami, and D. H. Pashley, Long-term durability of dentin bonds made with a self-etching primer, in vivo. J. Dent. Res. 1999; 78: 906–911.
- 68M. F. Burrow, M. Satoh, and J. Tagami, Dentin durability after three years using a dentin bonding agent with and without priming. Dent. Mater. 1996; 12: 302–307.
- 69M. Hashimoto, H. Ohno, M. Kaga, K. Endo, H. Sano, and H. Oguchi, In vivo degradation of resin-dentin bonds in humans over 1 to 3 years. J. Dent. Res. 2000; 79: 1385–1391.
- 70P. Spencer and Y. Wang, Adhesive phase separation at the dentin interface under wet bonding conditions. J. Biomed. Mater. Res. 2002; 62: 447–456.
- 71P. Spencer, Y. Wang, M. P. Walker, D. M. Wieliczka, and J. R. Swafford, Interfacial chemistry of the dentin/adhesive bond. J. Dent. Res. 2000; 79: 1458–1463.
- 72Y. Wang and P. Spencer, Quantifying adhesive penetration in adhesive/dentin interface using confocal Raman microspectroscopy. J. Biomed. Mater. Res. 2002; 59: 46–55.
- 73P. Spencer and J. R. Swafford, Unprotected protein at the dentin-adhesive interface. Quintessence Int. 1999; 30: 501–507.
- 74Y. Wang and P. Spencer, Hybridization efficiency of the adhesive dentin interface with wet bonding. J. Dent. Res. 2003; 82: 141–145.
- 75P. Spencer, J. L. Katz, M. Tabib-Azar, Y. Wang, A. Wagh, and T. Nomura, Hyperspectral analysis of collagen infused with BisGMA-based polymeric adhesive. In: D. L. W. K. U. Lewandrowski, D. J. Trantolo, V. Hasirci, M. Yaszemski, and D. E. Altobelli, eds., Biomaterials Handbook-Advanced Applications of Basic Sciences and Bioengineering. New York: Marcel Dekker, 2003.