Articular Cartilage
Walter Herzog
University of Calgary, Human Performance Lab, Calgary, Alberta, Canada
Search for more papers by this authorWalter Herzog
University of Calgary, Human Performance Lab, Calgary, Alberta, Canada
Search for more papers by this authorAbstract
Articular cartilage is a thin (about 1–6 mm in human joints) layer of fibrous connective tissue covering the articular surfaces of bones in synovial joints. It consists of cells (2–15% in terms of volumetric fraction) and an intercellular matrix (85–98%) with a 65–80% water content. Articular cartilage is a viscoelastic material and in conjuction with synovial (joint) fluid, allows for virtually frictionless movement (coefficients of friction from 0.002–0.05) of the joint surfaces. Osteoarthritis is a joint disease that is associated with a degradation and loss of articular cartilage from the joint surfaces and a concomitant increase in joint friction causing pain and disability, particularly in the elderly population. The primary functions of articular cartilage include force transmission across joints, distribution of articular forces so as to minimize stress concentrations, and provision of a smooth surface for relative gliding of joint surfaces. In most people, articular cartilage fulfills its functional role for decades, although the incidence of osteoarthritis in North America is about 50% among people of age 60 and greater.
Bibliography
- 1W. Hultkrantz, Über die Spaltrichtungen der Gelenkknorpel. Verh. Anat. Ges. 1898; 12: 248–256.
- 2D. Dowson, Biotribology of natural and replacement of synovial joints. In: V. C. Mow, A. Ratcliffe, and S. L.-Y. Wooeds., Biomechanics of Diarthrodial Joints. New York: Springer Verlag, 1990, pp. 305–345.
10.1007/978-1-4612-3450-0_13 Google Scholar
- 3E. Hunziker, Articular cartilage structure in humans and experimental animals. In: K. E. Peyron, J. G. Schleyerback, and V. C. Hascall, eds., Articular Cartilage and Osteoarthritis. New York: Raven Press, 1992, pp. 183–199.
- 4M. Wong, P. Wuethrich, P. Eggli, and E. Hunziker, Zone-specific cell biosynthetic activity in mature bovine articular cartilage: a new method using confocal microscopic stereology and quantitative autoradiography. J. Orthop. Res. 1996; 14(3): 424–432.
- 5A. Maroudas, Biophysical chemistry of cartilaginous tissues with special reference to solute and fluid transport. Biorheology. 1975; 12: 233–248.
- 6P. A. Torzilli, Influence of cartilage conformation on its equilibrium water partition. J. Orthop. Res. 1985; 3: 473.
- 7A. Benninghof, Form und Bau der Gelenkknorpel in ihren Beziehungen zur Funktion. In: Z. Zellforsch, ed., Der Aufbau des Gelenkknorpel in seinen Beziehungen zur Funktion. 1925; pp. 783–862.
- 8H. Notzli and J. Clark, Deformation of loaded articular cartilage prepared for scanning electron microscopy with rapid freezing and freeze-substitution fixation. J. Orthop. Res. 1997; 15: 76–86.
- 9R. M. Schinagl, D. Gurskis, A. C. Chen, and R. L. Sah, Depth-dependent confined compression modulus of full-thickness bovine articular cartilage. J. Orthop. Res. 1997; 15: 499–506.
- 10S. Federico, A. Grillo, G. La Rosa, G. Giaquinta, and W. Herzog, A transversely isotropic, transversely homogeneous microstructural-statistical model of articular cartilage. J. Biomech. 2005; 38: 2008–2018.
- 11R. S. Stockwell, Biology of Cartilage Cells. Cambridge: Cambridge University Press; 1979.
- 12I. H. M. Muir, Proteoglycans as organisers of the intercellular matrix. Biochem. Soc. Trans. 1983; 11(6): 613–622.
- 13A. L. Clark, T. R. Leonard, L. Barclay, J. R. Matyas, and W. Herzog, Opposing cartilages in the patellofemoral joint adapt differently to long-term cruciate deficiency: chondrocyte deformation and reorientation with compression. Osteoarthritis Cartilage doi:10.1016/j.joca.2005.07.010, 2005.
- 14F. Guilak, Compression-induced changes in the shape and volume of the chondrocyte nucleus. J. Biomech. 1995; 28: 1529–1541.
- 15F. Guilak, A. Ratcliffe, and V. C. Mow, Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J. Orthop. Res. 1995; 13: 410–421.
- 16C. A. Poole, R. T. Gilbert, D. Herbage, and D. J. Hartmann, Immunolocalization of type IX collagen in normal and spontaneously osteoarthritic canine tibial cartilage and isolated chondrons. Osteoarthritis Cartilage. 1997; 5: 191–204.
- 17J. A. Buckwalter, E. B. Hunziker, L. C. Rosenberg, R. Coutts, M. Adams and D. Eyre, Articular cartilage: Composition and structure. In: S. L.-Y. Woo and J. A. Buckwalter, Eds., Injury and Repair of the Musculoskeletal Soft Tissues. American Academy of Orthopaedic Surgeons: Park Ridge, 1991; pp. 405–425.
- 18J. T. Thomas, S. Ayad, and M. E. Grant, Cartilage collagens: strategies for the study of their organisation and expression in the extracellular matrix. Ann. Rheum. Dis. 1994; 53: 488–496.
- 19E. M. Hasler, W. Herzog, J. Z. Wu, W. Muller, and U. Wyss, Articular cartilage biomechanics: theoretical models, material properties, and biosynthetic response. Crit. Rev. Biomed. Eng. 1999; 27(6): 415–488.
- 20G. D. Pins, E. K. Huang, D. L. Christiansen, and F. H. Silver, Effects of static axial strain on the tensile properties and failure mechanisms of self-assembled collagen fibers. J. Appl. Polymer Sci. 1997; 63: 1429–1440.
- 21L. P. Li, M. D. Buschmann, and A. Shirazi-Adl, A fibril reinforced nonhomogeneous poroelastic model for articular cartilage: inhomogeneous respones in unconfined compression. J. Biomech. 2000; 33: 1533–1541.
- 22J. Soulhat, M. D. Buschmann, and A. Shirazi-Adl, A fibril-network-reinforced biphasic model of cartilage in unconfined compression. J. Biomech. Eng. 1999; 121: 340–347.
- 23J. Z. Wu and W. Herzog, Elastic anisotropy of articular cartilage is associated with the microstructures of collagen fibers and chondrocytes. J. Biomech. 2002; 35: 931–942.
- 24M. W. Lark, E. K. Bayne, J. Flanagan, C. F. Harper, L. A. Hoerrner, N. I. Hutchinson, I. I. Singer, S. A. Donatelli, J. R. Weidner, H. R. Williams, R. A. Mumford, and L. S. Lohmander, Aggrecan degradation in human cartilage. Evidence for both matrix metalloproteinase and aggrecanase activity in normal, osteoarthritic, and rheumatoid joints. J. Clin. Invest. 1997; 100: 93–106.
- 25J. A. Buckwalter, K. E. Kuettner, and E. J. Thonar, Age-related changes in articular cartilage proteoglycans: electron microscopic studies. J. Orthop. Res. 1985; 3: 251–257.
- 26A. L. Clark, L. D. Barclay, J. R. Matyas, and W. Herzog, In-situ chondrocyte deformation with physiological compression of the feline patellofemoral joint. J. Biomech. 2003; 36: 553–568.
- 27J. H. Dashefsky, Arthroscopic measurement of chondromalacia of patella cartilage using a microminiature pressure transducer. Arthroscopy 1987; 3: 80–85.
- 28T. Lyyra, J. Jurvelin, P. Pitkänen, U. Väätäinen, and I. Kiviranta, Indentation instrument for the measurement of cartilage stiffness under arthroscopic control. Med. Eng. Phys. 1995; 17: 395–399.
- 29R. L. Sah, A. S. Yang, A. C. Chen, J. J. Hant, R. B. Halili, M. Yoshioka, D. Amiel, and R. D. Coutts, Physical properties of rabbit articular cartilage after transection of the ACL. J. Orthop. Res. 1997; 15: 197–203.
- 30G. E. Kempson, The tensile properties of articular cartilage and their relevance to the development of osteoarthrosis. Orthopaedic Surgery and Traumatologie. Proceedings of the 12th International Society of Orthopaedic Surgery and Traumatologie, Tel Aviv Exerpta Medica, Amsterdam. 1972; 44–58.
- 31W. Zhu, V. C. Mow, T. J. Koob, and D. R. Eyre, Viscoelastic shear properties of articular cartilage and the effects of glycosidase treatments. J. Orthop. Res. 1993; 11: 771–781.
- 32P. D. Rushfeldt, R. W. Mann, and W. H. Harris, Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum-I. Ultrasonic measurement of acetabular surfaces, sphericity and cartilage thickness. J. Biomech. 1981; 14: 253–260.
- 33P. D. Rushfeldt, R. W. Mann, and W. H. Harris, Improved techniques for measuring in vitro the geometry and pressure distribution in the human acetabulum. II Instrumented endoprosthesis measurement of articular surface pressure distribution. J. Biomech. 1981; 14: 315–323.
- 34R. W. Mann, Comment on “an articular cartilage contact model based on real surface geometry”, Han Sang-Kuy, Salvatore Federico, Marcelo Epstein and Walter Herzog. J. Biomech. 2005; 38: 1741–1742.
- 35G. Bergmann, F. Graichen, and A. Rohlmann, Hip joint loading during walking and running, measured in two patients. J. Biomech. 1993; 26(8): 969–990.
- 36E. M. Hasler and W. Herzog, Quantification of in vivo patellofemoral contact forces before and after ACL transection. J. Biomech. 1998; 31: 37–44.
- 37W. Herzog, M. E. Adams, J. R. Matyas, and J. G. Brooks, A preliminary study of hindlimb loading, morphology and biochemistry of articular cartilage in the ACL-deficient cat knee. Osteoarthritis Cartilage 1993; 1: 243–251.
- 38W. Herzog, J. Z. Wu, T. R. Leonard, E. Suter, S. Diet, C. Muller, and P. Mayzus, Mechanical and functional properties of cat knee articular cartilage 16 weeks post ACL transection. J. Biomech. 1998; 31: 1137–1145.
- 39K. D. Brandt, S. L. Myers, D. Burr, and M. Albrecht, Osteoarthritic changes in canine articular cartilage, subchondral bone, and synovium fifty-four months after transection of the anterior cruciate ligament. Arthritis Rheum. 1991; 34: 1560–1570.
- 40K. D. Brandt, E. M. Braunstein, D. M. Visco, B. O’Connor, D. Heck, and M. Albrecht, Anterior (cranial) cruciate ligament transection in the dog: A bona fide model of osteoarthritis, not merely of cartilage injury and repair. J. Rheumatol. 1991; 18: 436–446.
- 41D. Longino, T. Butterfield, and W. Herzog, Frequency and length dependent effects of Botulinum toxin-induced muscle weakness. J. Biomech. 2005; 38: 609–613.
- 42W. Herzog and S. Federico, Considerations on joint and articular cartilage mechanics. Biomechan. Modeling Mechanobiol. 2005; in press.
- 43V. C. Mow, N. M. Bachrach, L. A. Setton, and F. Guilak, Stress, strain, pressure and flow fields in articular cartilage and chondrocytes. In: V. C. Mow, F. Guilak, R. Tran-Son-Tray, and R. M. Hochmuth eds., Cell Mechanics and Cellular Engineering. New York: Springer Verlag, 1994, pp. 345–379.
- 44D. Ingber, Integrins as mechanochemical transducers. Cell Biol. 1991; 3: 841–848.
- 45A. Ben-Ze’ev, Animal cell shape changes and gene expression. BioEssays. 1991; 13: 207–212.
- 46C. Slemenda, K. D. Brandt, D. K. Heilman, S. Mazzuca, E. M. Braunstein, B. P. Katz, and F. D. Wolinsky, Quadriceps weakness and osteoarthritis of the knee. Ann. Intern. Med. 1997; 127: 97–104.
- 47M. V. Hurley, The role of muscle weakness in the pathogenesis of osteoarthritis. Rheumat. Disease Clin. N. Am. 1999; 25(2): 283–298.
- 48C. Slemenda, D. K. Heilman, K. D. Brandt, B. P. Katz, S. Mazzuca, E. M. Braunstein, and D. Byrd, Reduced quadriceps strength relative to body weight. A risk factor for knee osteoarthritis in women? Arthritis Rheum. 1998; 41: 1951–1959.
- 49M. V. Hurley and D. J. Newham, The influence of arthrogenous muscle inhibition on quadriceps rehabilitation of patients with early unilateral osteoarthritic knees. Br. J. Rheumatol. 1993; 32: 127–131.
- 50A. A. Claessens, J. S. Schouten, F. A. van den Ouweland, and H. A. Valkenburg, Do clinical findings associate with radiographic osteoarthritis of the knee? Ann. Rheumatic. Diseases 1990; 49: 771–774.
- 51T. E. McAlindon, C. Cooper, J. R. Kirwan, and P. A. Dieppe, Determinants of disability in osteoarthritis of the knee. Ann. of Rheumat. Diseases 1993; 52: 258–262.
- 52N. M. Fisher, D. R. Pendergast, G. E. Gresham, and E. Calkins, Muscle rehabilitation: its effect on muscular and functional performance of pateients with knee osteoarthritis. Arch. Phys. Med. Rehabil. 1991; 72: 367–374.
- 53N. M. Fisher, G. E. Gresham, M. Abrams, J. Hicks, D. Horrigan, and D. R. Pendergast, Quantitative effects of physical therapy on muscular and functional performance in subjects with osteoarthritis of the knees. Arch. Phys. Med. Rehabil. 1993; 74: 840–847.
- 54N. M. Fisher, S. C. White, H. J. Yack, R. J. Smolinski, and D. R. Pendergast, Muscle function and gait in patients with knee osteoarthritis before and after muscle rehabilitation. Disabil. Rehabil. 1997; 19(2): 47–55.