Capillary Permeability
James B. Bassingthwaighte
University of Washington, Department of Bioengineering, Seattle, Washington
Search for more papers by this authorJames B. Bassingthwaighte
University of Washington, Department of Bioengineering, Seattle, Washington
Search for more papers by this authorAbstract
The capillary barrier serves to protect cells from noxious materials bound to intravascular proteins and to regulate pressures and volumes of interstitial fluid, while allowing passage of essential substrates from the blood and the removal of metabolites. The permeability of capillaries to a solute depends on the anatomy of the capillary wall and the nature of the solute. The walls consist of monolayers of endothelial cells with characteristics peculiar to the individual organ: Most capillaries have openings between endothelial cells and some have holes through them. Hydrophilic and polar solutes traverse these “pores”, whereas lipid-soluble solutes can permeate the lipid bilayer or the endothelial cell membranes. For some solutes, special solute-specific transporter proteins in the cell membrane facilitate transfer across the membrane. For estimating permeability coefficients and determining the mechanism of permeation, tracer experiments done under varied circumstances are generally the most informative. Osmotic transient experiments, performed by changing osmolarity inside the capillary, require relatively complex analysis because there are simultaneous fluxes of both water and solutes.
Bibliography
- 1R. Collander, The permeability of plant protoplasts to small molecules. Physiol. Plantarum. 1949; 2: 300–311.
- 2J. B. Bassingthwaighte, T. Yipintsoi, and R. B. Harvey, Microvasculature of the dog left ventricular myocardium. Microvasc. Res. 1974; 7: 229–249.
- 3B. R. Duling and R. M. Berne, Longitudinal gradients in periarteriolar oxygen tension: a possible mechanism for the participation of oxygen in local regulation of blood flow. Circ. Res. 1970; 27: 669–678.
- 4R. W. Gore and M. J. Davis, Mechanics of smooth muscle in isolated single microvessels. Ann. Biomed. Eng. 1984; 12: 511–520.
- 5 C. A. Goresky, and A. C. Groom, Microcirculatory events in the liver and spleen. Hand book of physiology. Sect. 2, The Cardiovascular System Volume IV. In: E. M. Renkin and C. C. Hichal eds., The Microcirculation, Washington DC: American Physiological Society, 1984; 689–780.
- 6E. M. Renkin, Multiple pathways of capillary permeability. Circ. Res. 1977; 41: 735–743.
- 7J. B. Bassingthwaighte, Compound delivery and local blood flows. Molecular Nuclear Medicine, edited by L. E. Feinendegen, W. W. Shreeve, W. C. Eckelman, Y. W. Bahk and H. N. Wagner, Jr., Berlin, Heidelberg, New York: 2003, p. 171–198.
- 8B. Guller, T. Yipintsoi, A. L. Orvis, and J. B. Bassingthwaighte, Myocardial sodium extraction at varied coronary flows in the dog: Estimation of capillary permeability by residue and outflow detection. Circ. Res. 1975; 37: 359–378.
- 9P. G. de Gennes, Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 1971; 55: 572–579.
- 10E. M. Renkin, C. C. Michel, and S. R. Geiger (Eds.), Handbook of Physiology. The Cardiovascular System. Vol IV, The Microcirculation Bethesda, MD: Am. Physiol. Soc., 1984, 1076 pp.
- 11E. M. Landis, Micro-injection studies of capillary permeability. II. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Am. J. Physiol. 1927; 82: 217–238.
- 12J. R. Pappenheimer, E. M. Renkin, and L. M. Borrero, Filtration, diffusion and molecular sieving through peripheral capillary membranes. A contribution to the pore theory of capillary permeability. Am. J. Physiol. 1951; 167: 13–46.
- 13A. Fick, über die messung des blutquantums in den herzventrikeln. Verhandl. der. phys-med. Ges. zu Wurzburg 1870 2: 36.
- 14C. Bohr, über die spezifische Tätigkeit der Lungen bei der respiratorischen Gasaufnahme und ihr Verhalten zu der durch die Alveolarwand stattfindenden Gasdiffusion. Skand. Arch. Physiol. 1909; 22: 221–280.
- 15F. P. Chinard and L. B. Flexner, The mechanism of passage of substances across capillary walls: the diffusion hypothesis. Proc. 19th Internat. Cong. Physiol. Sci., Montreal: 1953, p. 267–268.
- 16F. P. Chinard, G. J. Vosburgh, and T. Enns, Transcapillary exchange of water and of other substances in certain organs of the dog. Am. J. Physiol. 1955; 183: 221–234.
- 17K. L. Zierler, Theoretical basis of indicator-dilution methods for measuring flow and volume. Circ. Res. 1962; 10: 393–407.
- 18K. L. Zierler, Theory of use of indicators to measure blood flow and extracellular volume and calculation of transcapillary movement of tracers. Circ. Res. 1963; 12: 464–471.
- 19C. Crone, The permeability of capillaries in various organs as determined by the use of the ‘indicator diffusion’ method. Acta. Physiol. Scand. 1963; 58: 292–305.
- 20J. Kuikka, M. Levin, and J. B. Bassingthwaighte, Multiple tracer dilution estimates of D- and 2-deoxy-D-glucose uptake by the heart. Am. J. Physiol. Heart Circ. Physiol. 1986; 250: H29–H42.
- 21M. W. Gorman, J. B. Bassingthwaighte, R. A. Olsson, and H. V. Sparks, Endothelial cell uptake of adenosine in canine skeletal muscle. Am. J. Physiol. Heart Circ. Physiol. 1986; 250: H482–H489.
- 22E. M. Renkin, Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am. J. Physiol. 1959; 197: 1205–1210.
- 23E. M. Renkin, Exchangeability of tissue potassium in skeletal muscle. Am. J. Physiol. 1959; 197: 1211–1215.
- 24J. B. Bassingthwaighte, C. Y. Wang, and I. S. Chan, Blood-tissue exchange via transport and transformation by endothelial cells. Circ. Res. 1989; 65: 997–1020.
- 25J. B. Bassingthwaighte, I. S. Chan, and C. Y. Wang, Computationally efficient algorithms for capillary convection-permeation-diffusion models for blood-tissue exchange. Ann. Biomed. Eng. 1992; 20: 687–725.
- 26W. C. Sangren and C. W. Sheppard, A mathematical derivation of the exchange of a labeled substance between a liquid flowing in a vessel and an external compartment. Bull. Math. Biophys. 1953; 15: 387–394.
- 27C. A. Goresky, W. H. Ziegler, and G. G. Bach, Capillary exchange modeling: Barrier-limited and flow-limited distribution. Circ. Res. 1970; 27: 739–764.
- 28K. Vinnakota and J. B. Bassingthwaighte, Myocardial density and composition: A basis for calculating intracellular metabolite concentrations. Am. J. Physiol. Heart Circ. Physiol. 2004; 286: H1742–H1749.
- 29G. S. Kassab, K. N. Le, and Y-CB. Fung, A hemodynamic analysis of coronary capillary blood flow/ based on anatomic and distensibility data. Am. J. Physiol. Heart Circ. Physiol. 1999; 277: H2158–H2166.
- 30L. M. Schwartz, T. R. Bukowski, J. D. Ploger, and J. B. Bassingthwaighte, Endothelial adenosine transporter characterization in perfused guinea pig hearts. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H1502–H1511.
- 31D. A. Rickaby, J. H. Linehan, T. A. Bronikowski, and C. A. Dawson, Kinetics of serotonin uptake in the dog lung. J. Appl. Physiol. (Respirat. Environ. Exercise Physiol. 2): 1981; 51: 405–414.
- 32C. M. Malcorps, C. A. Dawson, J. H. Linehan, T. A. Bronikowski, D. A. Rickaby, A. G. Herman, and J. A. Will, Lung serotonin uptake kinetics from indicator-dilution and constant-infusion methods. J. Appl. Physiol. (Respirat. Environ. Exercise Physiol.): 1984; 57: 720–730.
- 33 J. B. Bassingthwaighte and C. A. Goresky, Modeling in the analysis of solute and water exchange in the microvasculature. In: E. M. Renkin and C. C. Michel, eds., Handbook of Physiology. Sect. 2, The Cardiovascular System. Vol IV, The Microcirculation. Bethesda, MD: Am. Physiol. Soc., 1984, p. 549–626.
- 34 J. B. Bassingthwaighte, C. A. Goresky, and J. H. Linehan (Eds.), Whole organ approaches to cellular metabolism. Capillary permeation, cellular uptake and product formation. New York: Springer Verlag, 1998, 575 pp.
10.1007/978-1-4612-2184-5 Google Scholar
- 35T. Yipintsoi, R. Tancredi, D. Richmond, and J. B. Bassingthwaighte, Myocardial extractions of sucrose, glucose, and potassium. In: C. Crone and N. A. Lassen, eds., Capillary Permeability (Alfred Benzon Symp. II), Copenhagen: Munksgaard, 1970, p. 153–156.
- 36R. M. Sheehan and E. M. Renkin, Capillary, interstitial, and cell membrane barriers to blood-tissue transport of potassium and rubidium in mammalian skeletal muscle. Circ. Res. 1972; 30: 588–607.
- 37C. C. Michel and F. E. Curry, Microvascular permeability. Physiol. Rev. 1999; 79: 703–761.
- 38O. A. Alvarez and D. L. Yudilevich, Heart capillary permeability to lipid-insoluble molecules. J. Physiol. 1969; 202: 45–58.
- 39C. Crone, Does ‘restricted diffusion’ occur in muscle capillaries?. PSEBM 1963; 112: 453–455.
- 40M. R. Kellen and J. B. Bassingthwaighte, An integrative model of coupled water and solute exchange in the heart. Am. J. Physiol. Heart Circ. Physiol. 2003a; 285: H1303–H1316.
- 41M. R. Kellen and J. B. Bassingthwaighte, Transient transcapillary exchange of water driven by osmotic forces in the heart. Am. J. Physiol. Heart Circ. Physiol. 2003b; 285: H1317–H1331.
- 42C. Crone and D. G. Levitt, Capillary permeability to small solutes. Handbook of Physiology, Chapter 10 Section 2: The Cardiovascular System Vol 4 The Microcirculation. Bethesda, MD.: American Physiological Society, 1984, p. 411–466.
- 43C. G. Caro, T. J. Pedley, R. C. Schroter, and W. A. Seed The Mechanics of the Circulation. Oxford: Oxford University Press, 1978, p. 527.