Abstract
Healing and fusion in challenging bone grafting procedures is not guaranteed using the gold standard of autogenous iliac crest bone, and clinicians are increasingly interested in tissue engineering solutions using cells and signaling factors to enhance both overall success rate and time to fusion. The potential role in wound repair from application of cytokines contained in platelets was initially described more than 20 years ago. A rapid, simple preparation method to perioperatively separate and collect the platelet-rich fraction was developed a decade later, expanding the potential range of clinical applications. Numerous additional point-of-care techniques have since been introduced, potentially providing a cost-effective alternative to single recombinant proteins. As with many emerging technologies, clinicians are confronted with a frequently conflicting array of largely anecdotal claims for clinical utility. With a focus on structural bone graft repair, this chapter will present the therapeutic basis for clinical use of topically applied autogenous growth factor preparations and summarize existing experimental and application-specific clinical outcomes reports.
Bibliography
- 1 H. S. An, K. Lynch, and J. Toth, Prospective comparison of autograft vs. allograft for adult posterolateral lumbar spine fusion: differences among freeze-dried, frozen, and mixed grafts. J. Spinal Disord. 1995; 8(2): 131–135.
- 2 P. Axelsson, R. Johnsson, B. Stromqvist, M. Arvidsson, and K. Herrlin, Posterolateral lumbar fusion. Outcome of 71 consecutive operations after 4 (2–7) years. Acta Orthop. Scan. 1994; 65(3): 309–314.
- 3 M. Bernhardt, D. E. Swartz, P. L. Clothiaux, R. R. Crowell, and A. A. White III, Posterolateral lumbar and lumbosacral fusion with and without pedicle screw internal fixation. Clin. Orthop. 1982; (284):109–115.
- 4 F. B. Christensen, K. Thomsen, S. P. Eiskjaer, J. Gelenick, and C. E. Bunger, Functional outcome after posterolateral spinal fusion using pedicle screws: comparison between primary and salvage procedure. Eur. Spine. J. 1998; 7(4): 321–327.
- 5 M. Deguici, A. J. Rapoff, and T. A. Zdeblick, Posterolateral fusion for isthmic spondylolisthesis in adults: analysis of fusion rate and clinical results. J. Spinal Disord. 1998; 11(6): 459–464.
- 6 J. C. France, M. J. Yaszemski, W. C. Lauerman, J. E. Cain, J. M. Glover, K. J. Lawson, J. D. Coe, and S. M. Topper, A randomized prospective study of posterolateral lumbar fusion. Outcomes with and without pedicle screw instrumentation. Spine 1999; 24(6): 553–560.
- 7 C. G. Greenough, M. D. Peterson, S. Hadlow S, and R. D. Fraser, Instrumented posterolateral lumbar fusion. Results and comparison with anterior interbody fusion. Spine 1998; 23(4): 479–486.
- 8 S. S. Jorgenson, T. G. Lowe, J. France, and J. Sabin, A prospective analysis of autograft versus allograft in posterolateral lumbar fusion in the same patient. A minimum of 1-year follow-up in 144 patients. Spine 1994; 19(18): 2048–2053.
- 9 J. A. McCulloch, Uninstrumented posterolateral lumbar fusion for single level isolated disc resorption and/or degenerative disc disease. J. Spinal Disord. 1999; 12(1): 34–39.
- 10 K. M. Parker, S. E. Murrell, S. D. Boden, and W. C. Horton, The outcome of posterolateral fusion in highly selected patients with discogenic low back pain. Spine 1996; 21(16): 1909–1917.
- 11 H. Pihlajamaki, O. Bostman, M. Ruuskanen, P. Myllynen, J. Kinnunen, and E. Karaharju, Posterolateral lumbosacral fusion with transpedicular fixation: 63 consecutive cases followed for 4 (2–7) years. Acta Orthop. Scan. 1996; 67(1): 63–68.
- 12 J. D. Rompe, P. Eysel, and C. Hopf, Clinical efficacy of pedicle instrumentation and posterolateral fusion in the symptomatic degenerative lumbar spine. Eur. Spine J. 1995; 4(4): 231–237.
- 13 C. L. Schnee, A. Freese, and L. V. Ansell, Outcome analysis for adults with spondylolisthesis treated with posterolateral fusion and transpedicular screw fixation. J. Neurosurg. 1997; 86(1): 56–63.
- 14 J. S. Thalgott, R. C. Sasso, H. B. Cotler, M. Aebi, and S. H. LaRocca, Adult spondylolisthesis treated with posterolateral lumbar fusion and pedicular instrumentation with AO DC plates. J. Spinal Disord. 1997; 10(3): 204–208.
- 15 K. Thomsen, F. B. Christensen, S. P. Eiskjaoe, E. S. Hansen, S. Fruensgaard, and C. E. Bunger, 1997 Volvo Award winner in clinical studies. The effect of pedicle screw instrumentation on functional outcome and fusion rates in posterolateral lumbar spinal fusion: a prospective, randomized clinical study. Spine 1997; 22(24): 2813–2822.
- 16 M. W. Chapman and E. M. Younger, Morbidity at bone graft donor sites. J. Orthop. Trauma. 1989; 3: 192–195.
- 17 E. C. Shors, The development of coralline porous ceramic graft substitutes. In: C. T. Laurencin, ed. Bone Graft Substitutes. West Conshohocken, PA: ASTM International. 2003, pp. 271–288.
- 18 R. W. Bucholz, A. Carlton, and R. Holmes, Interporous hydroxyapatite as a bone graft substitute in tibial plateau fractures. Clin. Orthop. Rel. Res. 1989; 240: 53–62.
- 19 E. C. Shors, Bone graft substitutes: clinical studies using coralline hydroxyapatite. In: G. H. I. M. Walenkamp, ed. Biomaterials in Surgery. Stuttgart, Germany: Georg Thieme Verlag. 1998, pp. 83–89.
- 20 S. W. Wolfe, L. Pike, J. F. Slade III, and L. D. Katz, Augmentation of distal radius fracture fixation with coralline hydroxyapatite bone graft substitute. J. Am. Hand Surg. 1999; 24: 816–827.
- 21 F. Rahimi, B. T. Maurer, and M. G. Enzwiler, Coralline hydroxyapatite: a bone graft alternative in foot and ankle surgery. J. Foot Ankle Surg. 1997; 36: 192–203.
- 22 R. B. Irwin, M. Bernhard, and A. Biddinger, Coralline hydroxyapatite as a bone substitute in orthopedic oncology. Am. J. Orthop. 2001; 30: 544–550.
- 23 J. S. Thalgott, K. Fritts, J. M. Giuffre, and M. Timlin, Anterior fusion of the cervical spine with coralline hydroxyapatite. Spine 1999; 24: 1295–1299.
- 24 M. R. Urist, Bone formation by autoinduction. Science 1965; 150: 893–899.
- 25 M. E. Joyce, S. Jingushi, S. P. Scully, and M. E. Bolander, Role of growth factors in fracture healing. Prog. Clin. Biol. Res. 1991; 365: 391–416.
- 26 M. Lind, Growth factor stimulation of bone healing. Effects on osteoblasts, osteomies, and implants fixation. Acta Orthop. Scand. Suppl. 1998; 283: 2–37.
- 27 S. B. Trippel, R. D. Coutts, T. M. Einhorn, G. R. Mundy, and R. G. Rosenfeld, Growth factors as therapeutic agents. J. Bone Joint Surg. 1996; 78A(8): 1272–1286.
- 28 A. I. Caplan, The mesengenic process. Clin. Plast. Surg. 1994; 21(3): 429–435.
- 29 K. L. Kaplan, M. J. Broekman, A. Chernoff, G. R. Lesznik, and M. Drillings, Platelet alpha-granule proteins: studies on release and subcellular localization. Blood 1979; 53: 604–618.
- 30 T. Asahara, C. Bauters, L. P. Zheng, S. Takeshita, S. Bunting, N. Ferrara, J. F. Symes, and J. M. Isner, Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo. Circulation 1995; 92(9 Suppl): II365–II371.
- 31 D. R. Knighton, T. K. Hunt, K. K. Thakral, and W. H. Goodson III, Role of platelets and fibrin in the healing sequence: an in vivo study of angiogenesis and collagen synthesis. Ann. Surg. 1982; 196(4): 379–388.
- 32 M. Lind, B. Deleuran, K. Thestrup-Pedersen, K. Soballe, E. F. Eriksen, and C. Bunger, Chemotaxis of human osteoblasts. Effects of osteotropic growth factors. APMIS. 1995; 103(2): 140–146.
- 33 W. F. Krause, J. McMillan, C. Lohmann, Z. Schwartz, D. M. Arm, and B. D. Boyan, Platelet-rich plasma—a review of its components and use in bone grafting. Clin. Orthop. Rel. Res., in submission.
- 34 D. L. Hwang, L. J. Latus, and A. Lev-Ran, Effects of platelet-contained growth factors (PDGF, EGF, IGF-I, and TGF-beta) on DNA synthesis in porcine aortic smooth muscle cells in culture. Exp. Cell. Res. 1992; 200: 358–360.
- 35 C. H. Kasperk, J. E. Wergedal, S. Mohan, D. L. Long, K. H. W. Lau, and D. J. Baylink, Interactions of growth factors present in bone matrix with bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 1990; 3: 147–158.
- 36 R. Ross, E. W. Raines, and D. F. Bowen-Pope, The biology of platelet-derived growth factor. Cell 1986; 46(2): 155–169.
- 37 C. P. Kiritsy, A. B. Lynch, and S. E. Lynch, Role of growth factors in cutaneous wound healing: a review. Crit. Rev. Oral Biol. Med. 1993; 4(5): 729–760.
- 38 T. J. Nash, C. R. Howlett, C. Martin, J. Steele, K. A. Johnson, and D. J. Hicklin, Effect of platelet-derived growth factor on tibial osteotomies in rabbits. Bone 1994; 15(2): 203–208.
- 39 M. Centrella, T. L. McCarthy, and E. Canalis, Platelet-derived growth factor enhances DNA and collagen synthesis in osteoblasts-enriched cultures from fetal rat parietal bone. Endocrinology 1989; 125(1): 13–19.
- 40 J. Massague, TGF-beta signal transduction. Ann. Rev. Biochem. 1998; 67: 753–791.
- 41 J. G. Andrew, J. Hoyland, S. M. Andrew, A. J. Freemont, and D. Marsh, Demonstration of TGF-beta 1 mRNA by in situ hybridization in normal human fracture healing. Calcif. Tissue Int. 1993; 52(2): 74–78.
- 42 W. R. Gombotz, S. C. Pankey, L. S. Bouchard, D. H. Phan, and P. A. Puolakkainen, Stimulation of bone healing by transforming growth factor-β released from polymeric or ceramic implants. J. Appl. Biomat. 1994; 5: 141–150.
- 43 M. Centrella, T. L. McCarthy, and E. Canalis, Transforming growth factor beta and remodeling of bone. J. Bone Joint Surg. 1991; 73A(9): 1418–1427.
- 44 T. Murakami, M. Yamamoto, K. Ono, M. Nishikawa, N. Nagata, K. Motoyoshi, and T. Akatsu, Transforming growth factor-beta1 increases mRNA levels of osteoclastogenesis inhibitory factor in osteoblastic/stromal cells and inhibits the survival of murine osteoclast-like cells. Biochem. Biophys. Res. Commun. 1998; 252(3): 747–752.
- 45 M. Centrella, M. C. Horowitz, J. M. Wozney, and T. L. McCarthy, Transforming growth factor-beta gene family members and bone. Endocr. Rev. 1994; 15(1): 27–39.
- 46 E. Canalis and L. G. Raisz, Effect of fibroblast growth factor on cultured fetal rat calvaria. Metabolism 1980; 29: 108–114.
- 47 T. Nakamura, Y. Hara, M. Tagawa, T. Yuge, H. Fukuda, and H. Nigi, Recombinant human basic fibroblast growth factor accelerates fracture healing by enhancing callus remodeling in experimental dog tibial fracture. J. Bone Miner. Res. 1998; 13(6): 942–949.
- 48 M. Arras, W. D. Ito, D. Scholz, B. Winkler, J. Schaper, and W. Schaper, Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 1998; 101(1): 40–50.
- 49 S. Jingushi, S. P. Scully, M. E. Joyce, Y. Sugioka, and M. E. Bolander, Transforming growth factor-beta 1 and fibroblast growth factors in rat growth plate. J. Orthop. Res. 1995; 13(5): 761–768.
- 50 U. Wartiovaara, P. Salven, H. Mikkola, R. Lassila, J. Kaukonen, V. Joukov, A. Orpana, A. Ristimaki, M. Heikinheimo, H. Joensuu, K. Alitalo, and A. Palotie, Peripheral blood platelets express VEGF-C and VEGF which are released during platelet activation. Thromb. Haemost. 1998; 80: 171–175.
- 51 R. Mohle, D. Green, M. A. S. Moore, R. L. Nachman, and S. Rafii, Constitutive production and thrombin-induced release of vascular endolthelial growth factor by human megakaryocytes and platelets. Proc. Nat. Acad. Sci. USA. 1997; 94: 663–668.
- 52 J. M. Schlaeppi, S. Gutzwiller, G. Finkenzeller, and B. Fournier, 1,25-Dihydroxyvitamin D3 induces the expression of vascular endothelial growth factor in osteoblastic cells. Endocr. Res. 1997; 23(3): 213–229.
- 53 S. Harada, S. B. Rodan, and G. A. Rodan, Expression and regulation of vascular endothelial growth factor in osteoblasts. Clin. Orthop. Rel. Res. 1995; 313: 76–80.
- 54 N. Ferrara, K. Houck, L. Jakeman, and D. W. Leung, Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr. Rev 1992; 13(1): 18–32.
- 55 V. Midy and J. Plouet, Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem. Biophys. Res. Commun. 1994; 199(1): 380–386.
- 56 X. Guo, J. C. Y. Cheng, L. P. Law, and P. H. Chow, Vascular endothelial growth factor (VEGF) involvement in the endochondral ossification process during spinal fusion. Trans. Scoli Res. Soc. 2000.
- 57 K. Hartmann, T. G. Baier, R. Loibl, A. Schmitt, and D. Schonberg, Demonstration of type I insulin-like growth factor receptors on human platelets. J. Recept. Res. 1989; 9(2): 181–198.
- 58 E. M. Spencer, A. Tokunaga, and T. K. Hunt, Insulin-like growth factor binding protein-3 is present in the alpha-granules of platelets. Endocrinology 1993; 132(3): 996–1001.
- 59 J. M. Hock, M. Centrella, and E. Canalis, Insulin-like growth factor I has independent effects on bone matrix formation and cell replication. Endocrinology 1988; 122: 254–260.
- 60 J. B. Sipe, C. A. Waits, B. Skikne, M. Imkie, Dhanyamraju, and H. C. Anderson, The presence of bone morphogenetic proteins (BMPs) in megakaryocytes and platelets. 24th Amer. Soc. Bone Miner. Res., 2002.
- 61 M. Slater, J. Patava, K. Kingham, and R. S. Mason, Involvement of platelets in stimulating osteogenic activity. J. Orthop. Res. 1995; 13(5): 655–663.
- 62 J. Street, D. Winter, J. H. Wang, A. Wakai, A. McGuinness, and H. P. Redmond, Is human fracture hematoma inherently angiogenic? Clin. Orthop. Rel. Res. 2000; 378: 224–237.
- 63 W. V. Giannobile, R. A. Hernandez, R. D. Finkelman, S. Ryan, C. P. Kiritsy, M. D'Andrea, and S. E. Lynch, Comparative effects of platelet-derived growth factor-BB and insulin-like growth factor-I, individually and in combination, on periodontal regeneration in Macaca fascicularis. J. Periodontal Res. 1996; 31(5): 301–312.
- 64 T. J. Hannon, G. Polston, W. J. Pekarske, W. Carnivali, N. Wall, and D. Leivers, Determination of Platelet Yields from Platelet Rich Plasma for Five Autotransfusion Machines, Cardiothoracic Research and Education Foundation, 1999.
- 65 B. L. Eppley, J. E. Woodell, and J. Higgins, Plastelet quantification and growth factor analysis from platelet-rich plasma (PRP): implications for wound healing. Plastic Reconstruc. Surg., in press.
- 66 C. L. Lake, Normal hemostasis. In: C. L. Lake and R. A. Moore, eds. Blood. New York: Raven Press. 1995.
- 67 D. Green , Proc. Am. Acad. Clin. Perf. 1997; 18: 74–76.
- 68 N. S. Taichman, S. Young, A. T. Cruchley, P. Taylor, and E. Paleolog, Human neutrophils secrete vascular endothelial growth factor. J. Leukoc. Biol. 1997; 62(3): 397–400.
- 69 M. Gaudry, O. Bregerie, V. Andrieu, J. El Benna, M. A. Pocidalo, and J. Hakim, Intracellular pool of vascular endothelial growth factor in human neutrophils. Blood 1997; 90(10): 4153–4161.
- 70 Y. Sato, F. Okada, M. Abe, T. Seguchi, M. Kuwano, S. Sato, A. Furuya, N. Hanai, and T. Tamaoki, The mechanism for the activation of latent TGF-beta during co-culture of endothelial cells and smooth muscle cells: cell-type specific targeting of latent TGF-beta to smooth muscle cells. J. Cell Biol. 1993; 123(5): 1249–1254.
- 71 R. E. Marx, E. R. Carlson, R. M. Eichstaedt, S. R. Schimmele, J. E. Strauss, and K. R. Georgeff, Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 1998; 85(6): 638–646.
- 72 R. E. Marx, W. J. Ehler, and M. Peleg, Mandibular and facial reconstruction: rehabilitation of the head and neck cancer patient. Bone 1996; 19(Suppl 1): 595–625.
- 73 R. Zimmermann, R. Jakubietz, M. Jakubietz, E. Strasser, A. Schlegel, J. Wiltfang, and R. Eckstein, Different preparation methods to obtain platelet components as a source of growth factors for local application. Transfusion 2001; 41: 1217–1224.
- 74 J. M. Lane, BMPs: why are they not in everyday use? J. Bone Joint Surg 2001; 83A(Suppl 1 Pt 2): S161–S163.
- 75 S. Mohan and D. J. Baylink, Bone growth factors. Clin. Orthop. Rel. Res. 1991; 263: 30–43.
- 76 O. Grundnes and O. Reikeras, The importance of the hematoma for fracture healing in rats. Acta Orthop. Scand. 1993; 64: 340–342.
- 77 S. M. Tilkian, M. B. Conover, and A. G. Tilkian, eds. Clinical Implications of Laboratory Tests, 3rd ed. St. Louis, MO: CV Mosby Co. 1983, p. 371.
- 78 G. V. R. Born, Functional physiology of platelets. In: R. Biggs, ed. Human Blood Coagulation, Haemostasis and Thrombosis, 2nd ed. Oxford, UK: Blackwell Scientific Publications. 1976, p. 187.
- 79 G. P. McNicol and A. S. Douglas, The fibrinolytic enzyme system. In: R. Biggs, ed. Human Blood Coagulation, Haemostasis and Thrombosis, 2nd ed. Oxford, UK: Blackwell Scientific Publications. 1976, p. 413.
- 80 K. Gutensohn, A. Alisch, W. Krueger, N. Kroeger, and P. Kuehnl, Extracorporeal plateletpheresis induces the interaction of activated platelets with white blood cells. Vox. Sang. 2000; 78: 101–105.
- 81 J. Zeller, An electronmicroscopic study of microaggregates in ACD stored blood. Trans III Congress on Thrombosis and Haemostasis, 1972: 264.
- 82 A. G. Hood and G. D. Reeder, Unpublished data, 2003.
- 83 S. V. Kevy and M. S. Jacobson, Comparison of methods for point of care preparation of autologous platelet gel. J. Extra Corpor. Technol. 2004; 36(1): 28–35.
- 84 S. V. Kevy, M. S. Jacobson, and R. Lazar, Quantitative and qualitative analysis of autologous platelet products: a comparative study. Proc. Bone Summit, Cleveland, OH, May 2004, poster #135.
- 85 D. R. Knighton, Classification and treatment of chronic nonhealing wounds: successful treatment with autologous platelet-derived wound healing factors. Ann. Surg. 1986; 204(3): 322–330.
- 86 R. E. Marx, Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dentistry 2001; 10(4): 225–228.
- 87 G. D. Reeder, A. G. Hood, and P. S. Potter, Optimizing platelet yields from perioperative pheresis devices. Proc. Am. Acad. Cardiovasc. Perf. 1999.
- 88 D. M. Arm, G. L. Lowery, A. G. Hood, and E. C. Shors, Characterization of an autologous buffy coat gel containing multiple growth factors. 45th Ann Orthop Res Soc, 1999: 604.
- 89 D. M. Arm, M. Ponticiello, and E. C. Shors, Autologous Growth Factors: Characterization and Clinical Use. Australian Spine Society, 2001.
- 90 D. M. Arm, A. G. Hood, and R. S. Mason, Unpublished data, 1998.
- 91 S. E. Haynesworth, S. Kadiyala, L.-N. Liang, T. Thomas, and S. P. Bruder, Mitogenic stimulation of human mesenchymal stem cells by platelet releasate suggests a mechanism for enhancement of bone repair by platelet concentrate. 48th Ann Orthop Res Soc, 2002.
- 92 E. Lucarelli, A. Beccheroni, D. Donati, L. Sangiorgi, A. Cenacchi, A. M. Del Vento, C. Meotti, A. Z. Bertoja, R. Giardino, P. M. Fornasari, M. Mercuri, and P. Picci, Platelet-derived growth factors enhance proliferation of human stromal stem cells. Biomaterials 2003; 24(18): 3095–3100.
- 93 R. Gruber, F. Varga, M. B. Fischer, and G. Watzek, Platelets stimulate proliferation of bone cells: involvement of platelet-derived growth factor, microparticles and membranes. Clin. Oral Impl. Res. 2002; 13(5): 529–535.
- 94 G. Weibrich, S. H. Gnoth, M. Otto, T. E. Reichert, and W. Wagner, Growth stimulation of human osteoblast-like cells by thrombocyte concentrates in vitro. Mund. Kiefer Ges. 2002; 6(3): 168.
- 95 W. Walsh, S. Nicklin, A. Loefler, Y. Yu, and D. Arm, Autologous growth factors (AGF) and spinal fusion. 47th Ann Orthop Res Soc, 2001: 951.
- 96 W. R. Walsh, A. Loefler, D. M. Arm, R. E. Stanford, J. Harrison, and D. H. Sonnabend, Growth factor gel and a resorbable porous ceramic for use in spinal fusion. 45th Ann Orthop Res Soc, 1999: 270.
- 97 M. J. Allen, J. E. Schoonmaker, F. Li, N. R. Ordway, D. M. Arm, and H. A. Yuan, Interbody fusion with a resorbable bone substitute supplemented with Autologous growth factors (AGF): evaluation in a sheep model. 48th Ann Orthop Res Soc, 2002.
- 98 J. C. Sefter, B. W. Cunningham, and P. C. McAfee, Autologous growth factor versus autogenous iliac graft for anterior cervical interbody arthrodesis. Int. Mtg. Adv. Spine Tech E-poster, 2001: 71.
- 99 P. Sethi, J. Miranda, J. Grauer, S. Friedlaender, S. Kadiyala, and T. Patel, The use of platelet concentrate in posterolateral fusion: biomechanical and histologic analysis. 28th Int Soc Study Lumbar Spine, 2001: 21.
- 100 H. Li, X. Zou, Q. Xue, N. Egund, M. Lind, and C. Bunger, Anterior interbody lumbar fusion with carbon fiber cage loaded with bioceramics and platelet rich plasma. An experimental study on pigs. Eur. Spine J. 2004; Jan: 17.
- 101 M. A. N. Siebrecht, P. P. DeRooij, D. M. Arm, M. L. Olsson, and P. Aspenberg, Platelet concentrate increases bone ingrowth into porous hydroxyapatite. Orthopedics 2002; 25(2): 169–172.
- 102 P. Aspenberg and J.-S. Wang, A new bone chamber used for measuring osteoconduction in rats. Eur. J. Exp. Musculoskel. Res. 1993; 2: 69–74.
- 103 T. B. Jensen, J. E. Bechtold, X. Chen, L. Kidder, and K. Soballe, Autologous Growth Factors™ (AGF™) in combination with morselized bone allograft improves implant fixation. 48th Ann Orthop Res Soc, 2002.
- 104 T. B. Jensen, S. Overgaard, M. Lind, O. Rahbek, C. Bunger, and K. Soballe, Osteogenic protein 1 device increases bone formation and bone graft resorption around cementless implants. Acta Orthop. Scand. 2002; 73(1): 31–39.
- 105 T. B. Jensen, O. Rahbek, S. Overgaard, and K. Soballe, Platelet rich plasma and fresh frozen bone allograft as enhancement of implant fixation. An experimental study in dogs. J. Orthop. Res. 2004; 22(3): 653–658.
- 106 A. G. Hood, Perioperative autologous sequestration III: a new physiologic glue with wound healing properties. Trans. Am. Acad. Cardiovasc. Perf. 1993; 14: 126–128.
- 107 R. E. Marx, D. M. Green, and B. Klink, Platelet gel as an intraoperatively procured platelet-based alternative to fibrin glue. Plast. Reconstr. Surg. 1998; 101(4): 1161–1162.
- 108 D. H. Whitman, R. L. Berry, and D. M. Green, Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J. Oral Maxillofac. Surg. 1997; 55(11): 1294–1299.
- 109 E. Anitua, Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int. J. Oral Maxillofac. Implants 1999; 14: 529–535.
- 110 S. Bhanot and J. C. Alex, Current applications of platelet gels in facial plastic surgery. Fac. Plastic Surg. 2002; 18(1): 27–33.
- 111 R. Marx, Healing enhancement of skin graft donor sites with PRP. Trans. 82nd Ann Ame Acad Oral Max Surg, September 2000.
- 112 P. A. Mooar, M. J. Gardner, P. R. Klepchick, and H. H. Sherk, The efficacy of autologous platelet gel in total knee arthroplasty. Trans. 67th Amer Acad Orthop Surg. PE 148, 2000.
- 113 J. Pritchard, Platelet-rich plasma in mini-open rotator cuff repair. 16th Ann Biomet Hip and Knee Update, Lake Arthur, Lousiana, November 2003.
- 114 G. L. Lowery, S. Kulkarni, and A. E. Pennisi, Use of Autologous Growth Factors in lumbar spinal fusion. Bone 1999; 25(S2): 47S–50S.
- 115 J. J. Lettice, T. A. Kula, J. Kelley, and M. McCort, Supplemental Autogenous Growth Factors in spinal reconstructive surgery: technique and results. Trans 34th Scoli Res Soc, 1999.
- 116 D. W. Kucharzyk and G. Alavanja, The role of coralline hydroxyapatite with Autologous Growth Factors in instrumented lumbar spinal fusions. Int Mtg Adv Spine Tech E-poster 41, 2001.
- 117 H. T. Hee, M. E. Majd, R. T. Holt, and L. Myers, Do Autologous Growth Factors enhance transforaminal lumbar interbody fusion? Eur. Spine J. 2003; 12: 400–407.
- 118 B. Bose and M. A. Malzarini, Bone graft gel: Autologous Growth Factors used with autograft bone for lumbar spine fusions grafted with AGF, Pro Osteon, and local bone. Adv. Therapeut. 2002; 19(4): 170–175.
- 119 M. J. Broom and M. Scherb, Use of autologous growth factors in posterior lumbar spine fusion. Spinal Skeletal Solutions, Maui, Hawaii, January 2004.
- 120 R. C. Waldrip, Bone grafting composites with Autologous Growth Factors in posterior lumbar fusion. Spinal Skeletal Solutions, Maui, Hawaii, January 2004.
- 121 J. B. Logan, D. D. Dietz, and J. M. Guiffre, Autologous bone augmented with Autologous Growth Factors and resorbable porous ceramic for posterolateral lumbar fusion: a preliminary report. Int Mtg Adv Spine Tech, 2002.
- 122 K. L. Kurica, K. Booton, and J. M. Giuffre, Autologous Growth Factors and resorbable porous ceramic without bone graft for instrumented posterolateral lumbar fusion. Int Mtg Adv Spine Tech, 2002.
- 123 M. T. Rohmiller, G. A. Mencio, and N. E. Green, Use of coralline hydroxyapatite and autogenous growth factors to achieve spinal fusion in adolescents undergoing posterior spinal fusion for correction of scoliosis. Scoli Res Soc, 2002.
- 124 M. L. Jimenez and T. L. Anderson, The use of allograft, platelet derived growth factors, and internal bone stimulation for treating recalcitrant nonunions. Am Assoc Orthop Surg, 2003: 16.
- 125 W. P. Grant and D. Jacobus, Autologous growth factors in Charcot reconstruction. Amer Podiatric Medical Assn, 2003.
- 126 N. Birch, D. Noyes, and M. Shaw, Autologous Growth Factor (AGF) and thrombin spray used to reduce post-operative surgery. Trans ISSLS. poster 351, 2004.
- 127 L. G. Jenis, R. J. Banco, and B. Kwon, A prospective study of Autologous Growth Factors® (AGF®) in lumbar interbody fusion. Spinal Skeletal Solutions, Maui, Hawaii, Jan 2004; Amer. Acad. Orthop. Surg. Spine J., in press.
- 128 D. Volgas, A randomized, controlled prospective trial of allograft with Autologous Growth Factors versus iliac crest bone graft for nonunions and delayed unions. Orthop. Trauma Assoc., submitted.
- 129 F. Castro, Activated growth factors in spinal fusions. 18th Ann North Amer Spine Soc, 2003.
- 130 Y. Anekstein, S. Glassman, R. Puno, and L. Carreon, Platelet gel (AGF) fails to increase fusion rate. 18th Ann North Amer Spine Soc, 2003.
- 131 B. K. Weiner and M. Walker, Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine 2003; 28(17): 1968–1971.
- 132 D. M. Arm , Spine 2004; 29(8): 946–948.
- 133 G. W. Wood II, R. J. Boyd, T. A. Carothers, F. L. Mansfield, G. R. Rechtine, M. J. Rozen, and C. E. Sutterlin III, The effect of pedicle screw/plate fixation on lumbar/lumbrosacral autogenous bone graft fusions in patients with degenerative disc disease. Spine 1995; 20(7): 819–830.
- 134 M. Lorenz, M. Zindrick, P. Schwaegler, L. Vrbos, M. A. Collatz, R. Behal, and R. Cram, A comparison of single-level fusions with and without hardware. Spine 1991; 16S(8): S455–S458.
- 135 J. S. Fischgrund, M. Mackay, H. N. Herkowitz, R. Brower, D. M. Montgomery, and L. T. Kurz, Degenerative spondylolisthesis with spinal stenosis: a prospective, randomized study comparing decompressive laminectomy and arthrodeses with and without spinal instrumentation. Spine 1997; 22(24): 2807–2812.
- 136
J. Mochida,
K. Suzuki, and
M. Chiba,
How to stabilize a single level lesion of degenerative lumbar spondylolisthesis.
Clin. Orthop.
1999;
368:
126–134.
10.1097/00003086-199911000-00015 Google Scholar
- 137 R. A. McGuire and G. M. Amundson, The use of primary internal fixation in spondylolisthesis. Spine 1993; 18(12): 1662–1672.
- 138 S. A. Grubb and H. J. Lipscomb, Results of lumbrosacral fusion for degenerative disc disease with and without instrumentation. Two- to five-year follow-up. Spine 1992; 17(3): 349–355.
- 139 M. Bernhardt, D. E. Swartz, P. L. Clothiaux, R. R. Crowell, and A. A. White III, Posterolateral lumbar and lumbrosacral fusion with and without pedicle screw internal fixation. Clin. Orthop. 1992; 284: 109–115.
- 140
S. M. Mardjetko,
P. J. Connolly, and
S. Shott,
Degenerative lumbar spondylosis: a meta-analysis of literature 1970–1993.
Spine
1994;
20(Suppl):
S2256–S2265.
10.1097/00007632-199410151-00002 Google Scholar
- 141 T. C. Patel, A. R. Vaccaro, E. Truumees, J. S. Fischgrund, H. N. Herkowitz, and A. Hilibrand, Two-year follow-up on patients in a pilot safety and efficacy study of OP-1 (rhBMP-7) in posterolateral lumbar fusion as a replacement for iliac crest autograft. 18th Ann North Amer Spine Soc, 2003.
- 142 L. J. Marden, R. S. Fan, G. F. Pierce, A. H. Reddi, and J. O. Hollinger, Platelet-derived growth factor inhibits bone regeneration induced by osteogenin, a bone morphogenetic protein, in rat craniotomy defects. J. Clin. Invest. 1993; 92: 2897–2905.
- 143 S. E. Harris, L. F. Bonewald, M. A. Harris, M. Sabatini, S. Dallas, J. Q. Feng, N. Ghosh-Choudhury, J. Wozney, and G. R. Mundy, Effects of transforming growth factor β on bone nodule formation and expression of bone morphogenetic protein 2, osteocalcin, osteopontin, alkaline phosphatase, and type I collagen mRNA in long-term cultures of fetal rat calvarial osteoblasts. J. Bone Miner. Res. 1994; 9(6): 855–863.
- 144 N. Duneas, J. Crooks, and U. Ripamonti, Transforming growth factor-beta 1: induction of bone morphogenetic protein genes expression during endochondral bone formation in the baboon, and synergistic interaction with osteogenic protein-1. Growth Factors 1998; 15: 259–277.
- 145 X. Si, Y. Jin, and L. Yang, Induction of new bone by ceramic bovine bone with recombinant human bone morphogenetic protein 2 and transforming growth factor beta. Int. J. Oral Max. Surg. 1998; 27(4): 310–314.
Further Reading
- C. A. Kirker-Head, T. N. Gerhart, S. H. Schelling, G. E. Hennig, E. Wang, and M. E. Holtrop, Long-term healing of bone using recombinant human bone morphogenetic protein-2. Clin. Orthop. Rel. Res. 1995; 318: 222–230.
- S. D. Cook, G. C. Baffes, M. W. Wolfe, T. K. Sampath, and D. C. Rueger, Recombinant human bone morphogenetic protein-7 induces healing in a canine long bone segmental defect. Clin. Orthop. Rel. Res. 1994; 301: 302–312.
- S. D. Cook, T. E. Dalton, E. H. Tan, T. S. Whitecloud III, and D. C. Rueger, In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusion. Spine 1994; 19: 1655–1663.
- S. D. Boden, J. H. Schimandle, and W. C. Hutton, The use of an osteoinductive growth factor for lumbar spinal fusion. Part II: Study of dose, carrier, and species. Spine 1995; 20: 2626–2632.
- S. D. Boden, T. A. Zdeblick, H. S. Sandhu, and S. E. Heim, The ese of rhBMP-2 in interbody fusion cages. Definitive evidence of osteoinduction in humans: a preliminary report. Spine 2000; 25: 376–381.
- J. K. Burkus, M. F. Gornet, C. A. Dickman, and T. A. Zdeblick, Anterior lumbar interbody fusion using rhBMP2 with tapered interbody cages. J. Spinal Disord. Tech. 2002; 15(5): 337–349.
- S. D. Boden, Bone substitutes in orthopedics: 2002 and beyond. 115th Meeting of the American Orthopedic Association, Symposium #3, 2002.
- G. J. Martin, S. D. Boden, M. A. Morone, and P. A. Moskovitz, Posterolateral intertransverse process spinal fusion arthrodeses with rhBMP-2 in a non-human primate. Important lessons learned regarding dose, carrier, and safety. J. Spinal Disord. 1999; 12: 179–186.
-
S. D. Boden,
Bioactive factors for bone tissue engineering.
Clin. Orthop. Rel. Res.
1999;
367S:
S84–S94.
10.1097/00003086-199910001-00009 Google Scholar
- H. Kaneko, T. Arakawa, H. Mano, T. Kaneda, A. Ogasawara, M. Nakagawa, Y. Toyama, Y. Yabe, M. Kumegawa, and Y. Hakeda, Direct stimulation of osteoclastic bone resorption by bone morphogenetic protein (BMP)-2 and expression of BMP receptors in mature osteoclasts. Bone 2000; 27(4): 479–486.
- M. Kanatani, T. Sugimoto, H. Kaji, T. Kobayashi, K. Nishiyama, M. Fukase, M. Kumegawa, and K. Chihara, Stimulatory effect of bone morphogenetic protein-2 on osteoclast-like cell formation and bone-resorbing activity. J. Bone Miner. Res. 1995; 10(11): 1681–1690.
- J. Alexander and C. Branch, Recombinant human bone morphogenic protein-2 in a posterior lumbar interbody fusion construct: 2-year clinical and radiologic outcomes. Proc. 17th Ann. NASS/Spine J. 2002; 2: 47S–128S.
- D. R. Knighton, Stimulation of repair in chronic nonhealing cutaneous ulcers using platelet-derived wound healing formula. Surg. Gynecol. Obstet. 1990; 170(1): 56–60.