Bioelectricity and Biomagnetism
Shoogo Ueno
University of Tokyo, Graduate School of Medicine, Tokyo, Japan
Search for more papers by this authorMasaki Sekino
University of Tokyo, Graduate School of Medicine, Tokyo, Japan
Search for more papers by this authorMari Ogiue-Ikeda
University of Tokyo, Graduate School of Medicine, Tokyo, Japan
Search for more papers by this authorShoogo Ueno
University of Tokyo, Graduate School of Medicine, Tokyo, Japan
Search for more papers by this authorMasaki Sekino
University of Tokyo, Graduate School of Medicine, Tokyo, Japan
Search for more papers by this authorMari Ogiue-Ikeda
University of Tokyo, Graduate School of Medicine, Tokyo, Japan
Search for more papers by this authorAbstract
This article reviews recent advances in biomagnetics and bioimaging techniques such as transcranial magnetic stimulation (TMS), electroencephalography (EEG), electromyography (EMG), magnetoencephalography (MEG), and magnetic resonance imaging (MRI). TMS is a method to stimulate neurons by eddy currents induced by a strong electric current, which is applied to a coil over the head. TMS is used for noninvasive mapping of the brain function, and has therapeutic effects on neurological and psychological diseases. EEG and EMG are techniques to record electric potentials at electrodes attached to the surface of the head and body, respectively. MEG is a method for measuring magnetic fields as weak as 5 fT by superconducting quantum interference devices (SQUID) arrayed on the scalp. MRI is a method to obtain spatial distribution of nuclear magnetic resonance (NMR) signals using gradient magnetic fields and Fourier transform. This article also reviews application of magnetic fields for cancer therapy and tissue engineering, and magnetoreception in animals.
Bibliography
- 1S. Ueno, Biomagnetic approaches to studying the brain. IEEE Eng. Med. Biol. 1999; 18: 108–120.
- 2A. T. Barker, R. Jalinous, and I. L. Freeston, Noninvasive magnetic stimulation of human motor cortex. Lancet 1985; 2: 1106–1107.
- 3S. Ueno, T. Matsuda, and M. Fujiki, Functional mapping of the human motor cortex obtained by focal and vectorial magnetic stimulation of the brain. IEEE Trans. Magn. 1990; 26: 1539–1544.
- 4C. M. Epstein, M. Sekino, K. Yamaguchi, S. Kamiya, and S. Ueno, Asymmetries of prefrontal cortex in human episodic memory: effects of transcranial magnetic stimulation on learning abstract patterns. Neurosci. Lett. 2002; 320: 5.
- 5T. Krings, B. R. Buchbinder, W. E. Butler, K. H. Chiappa, H. J. Jiang, B. R. Rosen, and G. R. Cosgrove, Stereotactic transcranial magnetic stimulation: correlation with direct electrical cortical stimulation. Neurosurgery 1997; 41: 1319–1325.
- 6T. Krings, H. Foltys, M. H. Reinges, S. Kemeny, V. Rohde, U. Spetzger, J. M. Gilsbach, and A. Thron, Navigated transcranial magnetic stimulation for presurgical planning—correlation with functional MRI. Minim. Invasive Neurosurg. 2001; 44: 234–239.
- 7M. Sekino and S. Ueno, Comparison of current distributions in electroconvulsive therapy and transcranial magnetic stimulation. J. Appl. Phys. 2002; 91: 8730–8732.
- 8M. Sekino and S. Ueno, FEM-based determination of optimum current distribution in transcranial magnetic stimulation as an alternative to electroconvulsive therapy. IEEE Trans. Magn. 2004; 40: 2167–2169.
- 9H. M. Haraldsson, F. Ferrarelli, N. H. Kalin, and G. Tononi, Transcranial magnetic stimulation in the investigation and treatment of schizophrenia: a review. Schizophr. Res. 2004; 71: 1–16.
- 10A. Pascual-Leone, J. Valls-Sole, J. P. Brasil-Neto, A. Cammarota, J. Grafman, and M. Hallett, Akinesia in Parkinson's disease. II. Effects of subthreshold repetitive transcranial motor cortex stimulation. Neurology 1994; 44: 735–741.
- 11T. A. Kimbrell, J. T. Little, R. T. Dunn, M. A. Frye, B. D. Greenberg, E. M. Wassermann, J. D. Repella, A. L. Danielson, M. W. Willis, B. E. Benson, A. M. Speer, E. Osuch, M. S. George, and R. M. Post, Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biol. Psychiat. 1999; 46: 1603–1613.
- 12M. Ogiue-Ikeda, S. Kawato, and S. Ueno, The Effect of transcranial magnetic stimulation on long-term potentiation in rat hippocampus. IEEE Trans. Magn. 2003; 39: 3390–3392.
- 13M. Ogiue-Ikeda, S. Kawato, and S. Ueno, The effect of repetitive transcranial magnetic stimulation on long-term potentiation in rat hippocampus depends on stimulus intensity. Brain Res. 2003; 993: 222–226.
- 14M. Ogiue-Ikeda, S. Kawato, and S. Ueno, Acquisition of ischemic tolerance by repetitive transcranial magnetic stimulation in the rat hippocampus. Brain Res. 2005; 1037: 7–11.
- 15H. Funamizu, M. Ogiue-Ikeda, H. Mukai, S. Kawato, and S. Ueno, Acute repetitive transcranial magnetic stimulation reactivates dopaminergic system in lesion rats. Neurosci. Lett. 2005; 383: 77–81.
- 16M. Ogiue-Ikeda, Y. Sato, and S. Ueno, A new method to destruct targeted cells using magnetizable beads and pulsed magnetic force. IEEE Trans. Nanobiosci. 2003; 2: 262–265.
- 17M. Ogiue-Ikeda, Y. Sato, and S. Ueno, Destruction of targeted cancer cells using magnetizable beads and pulsed magnetic force. IEEE Trans. Magn. 2004; 40: 3018–3020.
- 18S. Yamaguchi, M. Ogiue-Ikeda, M. Sekino, and S. Ueno, The effect of repetitive magnetic stimulation on the tumor generation and growth. IEEE Trans. Magn. 2004; 40: 3021–3023.
- 19S. Yamaguchi, M. Ogiue-Ikeda, M. Sekino, and S. Ueno, Effect of magnetic stimulation on tumor and immune functions. IEEE Trans. Magn., in press.
- 20S. Yamaguchi, M. Ogiue-Ikeda, M. Sekino, and S. Ueno, Effects of pulsed magnetic stimulation on tumor development and immune functions in mice. Bioelectromagnetics, in press.
- 21D. Cohen, Magnetoencephalography: detection of the brain’s electrical activity with a superconducting magnetometer. Science 1972; 175: 664–666.
- 22D. W. Marquardt, An algorithm for least-squares estimation of non-linear parameters. J. Soc. Indust. Appl. Math. 1963; 11: 431–441.
- 23M. S. Hamalainen and R. J. Ilmoniemi, Interpreting magnetic fields of the brain: minimum-norm estimates. Med. Biol. Eng. Comput. 1994; 32: 35–42.
- 24T. Maeno, A. Kaneko, K. Iramina, F. Eto, and S. Ueno, Source modeling of the P300 event-related response using magnetoencephalography and electroencephalography measurements. IEEE Trans. Magn. 2003; 39: 3396–3398.
- 25P. C. Lauterbur, Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 1973; 242: 190–191.
- 26P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy. Oxford, UK: Oxford University Press, 1993.
- 27T. Hatada, M. Sekino, and S. Ueno, FEM-based calculation of the theoretical limit of sensitivity for detecting weak magnetic fields in the human brain using magnetic resonance imaging. J. Appl. Phys. 2005; 97: 10E109.
- 28H. Kamei, K. Iramina, K. Yoshikawa, and S. Ueno, Neuronal current distribution imaging using magnetic resonance. IEEE Trans. Magn. 1999; 35: 4109–4111.
- 29J. Xiong, P. T. Fox, and J. H. Gao, Directly mapping magnetic field effects of neuronal activity by magnetic resonance imaging. Hum. Brain Map. 2003; 20: 41–49, 2003.
- 30S. Ueno and N. Iriguchi, Impedance magnetic resonance imaging: a method for imaging of impedance distributions based on magnetic resonance imaging. J. Appl. Phys. 1998; 83: 6450–6452.
- 31M. Sekino, K. Yamaguchi, N. Iriguchi, and S. Ueno, Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J. Appl. Phys. 2003; 93: 6730–6732.
- 32M. Sekino, Y. Inoue, and S. Ueno, Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurol. Clin. Neurophysiol. 2004; 55: 1–5.
- 33D. S. Tuch, V. J. Wedeen, A. M. Dale, J. S. George, and J. W. Belliveau, Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. USA 2001; 98: 11697–11701.
- 34J. Torbet, J. M. Freyssinet, and G. Hudry-Clergeon, Oriented fibrin gels formed by polymerization in strong magnetic fields. Nature 1981; 289: 91–93.
- 35M. Iwasaka, M. Takeuchi, S. Ueno, and H. Tsuda, Polymerization and dissolution of fibrin under homogeneous magnetic fields. J. Appl. Phys. 1998; 83: 6453–6455.
- 36H. Kotani, M. Iwasaka, S. Ueno, and A. Curtis, Magnetic orientation of collagen and bone mixture. J. Appl. Phys. 2000; 87: 6191–6193.
- 37H. Kotani, H. Kawaguchi, T. Shimoaka, M. Iwasaka, S. Ueno, H. Ozawa, K. Nakamura, and K. Hoshi, Strong static magnetic field stimulates bone formation to a definite orientation in vivo and in vitro. J. Bone Miner. Res. 2002; 17: 1814–1821.
- 38M. Iwasaka and S. Ueno, Optical absorbance of hemoglobin and red blood cell suspensions under magnetic fields. IEEE Trans. Magn. 2001; 37: 2906–2908.
- 39A. Umeno and S. Ueno, Quantitative analysis of adherent cell orientation influenced by strong magnetic fields. IEEE Trans. Nanobiosci. 2003; 2: 26–28.
- 40M. Ogiue-Ikeda and S. Ueno, Magnetic cell orientation depending on cell type and cell density. IEEE Trans. Magn. 2004; 40: 3024–3026.
- 41Y. Eguchi, M. Ogiue-Ikeda, and S. Ueno, Control of orientation of rat Schwann cells using an 8-T static magnetic field. Neurosci. Lett. 2003; 351: 130–132.
- 42T. Higashi, A. Yamagishi, T. Takeuchi, N. Kawaguchi, S. Sagawa, S. Onishi, and M. Date, Orientation of erythrocytes in a strong static magnetic field. Blood 1993; 82: 1328–1334.
- 43M. Ogiue-Ikeda, H. Kotani, M. Iwasaka, Y. Sato, and S. Ueno, Inhibition of leukemia cell growth under magnetic fields of up to 8T. IEEE Trans. Magn. 2001; 37: 2912–2914.
- 44M. Sekino, T. Matsumoto, K. Yamaguchi, N. Iriguchi, and S. Ueno, A method for NMR imaging of a magnetic field generated by electric current. IEEE Trans. Magn. 2004; 40: 2188–2190.
- 45Y. Manassen, E. Shalev, and G. Navon, Mapping of electrical circuits using chemical-shift imaging. J. Magn. Reson. 1988; 76: 371–374.
- 46M. Joy, G. Scott, and M. Henkelman, In vivo detection of applied electric currents by magnetic resonance imaging. Magn. Reson. Imaging 1989; 7: 89–94.
- 47K. Yamaguchi, M. Sekino, N. Iriguchi, and S. Ueno, Current distribution image of the rat brain using diffusion weighted magnetic resonance imaging. J. Appl. Phys. 2003; 93: 6739–6741.
- 48R. S. Yoon, T. P. DeMonte, K. F. Hasanov, D. B. Jorgenson, and M. L. G. Joy, Measurement of thoracic current flow in pigs for the study of defibrillation and cardioversion. IEEE Trans. Biomed. Eng. 2003; 50: 1167–1173.
- 49H. S. Khang, B. I. Lee, S. H. Oh, E. J. Woo, S. Y. Lee, M. H. Cho, O. Kwon, J. R. Yoon, and J. K. Seo, J-substitution algorithm in magnetic resonance electrical impedance tomography (MREIT): phantom experiments for static resistivity images. IEEE Trans. Med. Imaging 2002; 21: 695–702.
- 50M. Sekino, H. Mihara, N. Iriguchi, and S. Ueno, Dielectric resonance in magnetic resonance imaging: signal inhomogeneities in samples of high permittivity. J. Appl. Phys. 2005; 97: 10R303.
- 51Y. Kano, M. Akutsu, S. Tsunoda, H. Mano, Y. Sato, Y. Honma, and Y. Furukawa, In vitro cytotoxic effects of a tyrosine kinase inhibitor STI571 in combination with commonly used antileukemic agents. Blood 2001; 97: 1999–2007.
- 52B. B. Aggarwal, Signalling pathways of the TNF superfamily: a double-edged sword. Nat. Rev. Immunol. 2003; 3: 745–756.
- 53A. Ashkenazi, Targeting death and decoy receptors of the tumour-necrosis factor superfamily. Nat. Rev. Cancer 2002; 2: 420–430.
- 54B. H. Nelson, IL-2, regulatory T cells, and tolerance. J. Immunol. 2004; 172: 3983–3988.
- 55K. A. Smith, Interleukin-2: inception, impact, and implications. Science 1988; 240: 1169–1176.
- 56M. M. Walker, C. E. Diebel, C. V. Haugh, P. M. Pankhurst, J. C. Montgomery, and C. R. Green, Structure and function of the vertebrate magnetic sense. Nature 1997; 390: 319–426.
- 57C. E. Diebel, R. Proksch, C. R. Green, P. Neilson, and M. M. Walker, Magnetite defines a vertebrate magnetoreceptor. Nature 2000; 406: 299–302.
- 58J. L. Kirschvink, M. M. Walker, and C. E. Diebel, Magnetite-based magnetoreception. Curr. Opin. Neurobiol. 2001; 11: 462–467.
- 59M. M. Walker, T. E. Dennis, and J. L. Kirschvink, The magnetic sense and its use in long-distance navigation by animals. Curr. Opin. Neurobiol. 2002; 12: 735–744.
- 60K. J. Lohmann, S. D. Cain, S. A. Dodge, and C. M. Lohmann, Regional magnetic fields as navigational markers for sea turtles. Science 2001; 294: 364–366.
- 61J. B. Phillips, M. E. Deutschlander, M. J. Freake, and S. C. Borland, The role of extraocular photoreceptors in newt magnetic compass orientation: parallels between light-dependent magnetoreception and polarized light detection in vertebrates. J. Exp. Biol. 2001; 204: 2543–2552.
- 62W. Wiltschko, U. Munro, R. Wiltschko, and J. L. Kirschvink, Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behavior. J. Exp. Biol. 2002; 205: 3031–3037.
- 63G. Fleissner, E. Holtkamp-Rotzler, M. Hanzlik, M. Winklhofer, N. Petersen, and W. Wiltschko, Ultrastructural analysis of a putative magnetoreceptor in the beak of homing pigeons. J. Comp. Neurol. 2003; 458: 350–360.
- 64D. Strickman, B. Timberlake, J. Estrada-Franco, M. Weissman, P. W. Fenimore, and R. J. Novak, Effects of magnetic fields on mosquitoes. J. Am. Mosq. Control Assoc. 2000; 16: 131–137.
- 65T. J. Slowik, B. L. Green, and H. G. Thorvilson, Detection of magnetism in the red imported fire ant (Solenopsis invicta) using magnetic resonance imaging. Bioelectromagnetics 1997; 18: 396–399.
10.1002/(SICI)1521-186X(1997)18:5<396::AID-BEM7>3.0.CO;2-Y CAS PubMed Web of Science® Google Scholar
- 66D. T. Edmonds, A sensitive optically detected magnetic compass for animals. Proc. Biol. Sci. 1996; 263: 295–298.