Arterial Blood Pressure Processing
Marco Di Rienzo
Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
Search for more papers by this authorPaolo Castiglioni
Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
Search for more papers by this authorGianfranco Parati
University of Milano-Bicocca and S.Luca Hospital, Deptartment Clinical Medicine, Prevention and Applied Biotechnologies, Milano, Italy
Search for more papers by this authorMarco Di Rienzo
Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
Search for more papers by this authorPaolo Castiglioni
Fondazione Don Carlo Gnocchi ONLUS, Milano, Italy
Search for more papers by this authorGianfranco Parati
University of Milano-Bicocca and S.Luca Hospital, Deptartment Clinical Medicine, Prevention and Applied Biotechnologies, Milano, Italy
Search for more papers by this authorAbstract
This chapter contains descriptions of (1) signal processing techniques for the analysis of data derived from devices providing a discontinuous measure of blood pressure, (2) techniques for the analysis of continuous arterial blood pressure recordings, (3) the main methods for the analysis of blood pressure variability, and (4) techniques for the estimation of the baroreflex function from the analysis of spontaneous fluctuations of blood pressure and heart rate.
Bibliography
- 1W. W. Nichols and M. F. O’Rourke, (2005). McDonald's Blood Flow in Arteries. 5th edition. New York: Oxford University Press.
- 2J. T. Shepherd and F. M. About, (1983). Handbook of Physiology, IV ed., pp. 755–794. Bethesda, MD: American Physiological Society.
- 3M. Di Rienzo, G. Grassi, A. Pedotti, and G. Mancia, Continuous vs intermittent blood pressure measurements in estimating 24-hour average blood pressure. Hypertension 1983; 5: 264–269.
- 4F. Halberg, Chronobiology. Annu. Rev. Physiol. 1969; 31: 675–725.
- 5N. P. Chau, J. M. Mallion, G. R. de, E. Ruche, J. P Siche, O. Pelen, and G. Mathern, Twenty-four-hour ambulatory blood pressure in shift workers. Circulation 1989; 80: 341–347.
- 6A. Stanton, J. Cox, N. Atkins, K. O’Malley, and E. O’Brien, Cumulative sums in quantifying circadian blood pressure patterns. Hypertension 1992; 19: 93–101.
- 7S. Omboni, G. Parati, and G. Mancia, The trough:peak ratio and the smoothness index in the evaluation of control of 24 h blood pressure by treatment in hypertension. Blood. Press. Monit. 1998; 3: 201–204.
- 8G. Parati, M. Di Rienzo, G. Bertinieri, G. Pomidossi, R. Casadei, A. Groppelli, A. Pedotti, A. Zanchetti, and G. Mancia, Evaluation of the baroreceptor-heart rate reflex by 24-hour intra-arterial blood pressure monitoring in humans. Hypertension. 1988; 12: 214–222.
- 9J. A. Staessen, L. Thijs, G. Bijttebier, D. Clement, E. T. O’Brien, P. Palatini, J. L. Rodicio, J. Rosenfeld, and R. Fagard, Determining the trough-to-peak ratio in parallel-group trials. Systolic Hypertension in Europe (SYST-EUR) Trial Investigators. Hypertension. 1997; 29: 659–667.
- 10A. T. Bevan, A. J. Honour, and F. H. Stott, Direct arterial pressure recording in unrestricted man. Clin. Sci. 1969; 36: 329–344.
- 11B. P. Imholz, G. J. Langewouters, G. A. van Montfrans, G. Parati, G. J. van, K. H. Wesseling, W. Wieling, and G. Mancia, Feasibility of ambulatory, continuous 24-hour finger arterial pressure recording. Hypertension 1993; 21: 65–73.
- 12R. Kelly, C. Hayward, J. Ganis, J. Daley, A. Avolio, and M. O’Rourke, Noninvasive registration of the arterial pressure pulse waveform using high-fidelity applanation tonometry. J. Vasc. Med. Biol. 1989; 1: 142–149.
- 13D. H. Fitchett, Aortofemoral transfer function: A method to determine the instantaneous aortic valve gradient in aortic valve stenosis. J. Am. Coll. Cardiol. 1993; 22: 1909–1914.
- 14M. Karamanoglu, and M. P. Feneley, Derivation of the ascending aortic-carotid pressure transfer function with an arterial model. Am. J. Physiol. 1996; 271: H2399–H2404.
- 15C. J. Chen, E. Nevo, B. Fetics, P. H. Pak, F. C. Yin, W. L. Maughan, and D. A. Kass, Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Validation of generalized transfer function. Circulation 1997; 95: 1827–1836.
- 16B. Fetics, E. Nevo, C. H. Chen, and D. A. Kass, Parametric model derivation of transfer function for noninvasive estimation of aortic pressure by radial tonometry. IEEE Trans. Biomed. Eng. 1999;46: 698–706.
- 17W. J. Bos, G. J van, G. A. van Montfrans, A. H. van den Meiracker, and K. H. Wesseling. Reconstruction of brachial artery pressure from noninvasive finger pressure measurements. Circulation 1986; 94: 1870–1875.
- 18P. Gizdulich, A. Prentza, and K. H. Wesseling, Models of brachial to finger pulse wave distortion and pressure decrement. Cardiovasc. Res. 1997; 33: 698–705.
- 19M. Karamanoglu, and M. P. Feneley, On-line synthesis of the human ascending aortic pressure pulse from the finger pulse. Hypertension 1997; 30: 1416–1424.
- 20A. L. Pauca, M. F. O’Rourke, and N. D. Kon, Prospective evaluation of a method for estimating ascending aortic pressure from the radial artery pressure waveform. Hypertension 2001; 38: 932–937.
- 21S. A. Hope, D. B. Tay, I. T. Meredith, and J. D. Cameron, Use of arterial transfer functions for the derivation of aortic waveform characteristics. J. Hypertens. 2003; 21: 1299–1305.
- 22S. C. Millasseau, S. J. Patel, S. R. Redwood, J. M. Ritter, and P. J. Chowienczyk, Pressure wave reflection assessed from the peripheral pulse: is a transfer function necessary? Hypertension 2003; 41: 1016–1020.
- 23M. F. O’Rourke and G Mancia, Arterial stiffness. J. Hypertens. 1999; 17: 1–4.
- 24J. N. Cohn, S. Finkelstein, G. McVeigh, D. Morgan, L. LeMay, J. Robinson, and J. Mock, Noninvasive pulse wave analysis for the early detection of vascular disease. Hypertension 1995; 26: 503–508.
- 25R. Goldwyn, and T. Watt, Arterial pressure pulse contour analysis via a mathematical model for the clinical quantification of human vascular properties. IEEE Trans. Biomed. Eng. 1967; 14: 11–17.
- 26C. Cerutti, M. P. Gustin, P. Molino, and C. Z. Paultre, Beat-to-beat stroke volume estimation from aortic pressure waveform in conscious rats: comparison of models. Am. J. Physiol. Heart Circ. Physiol. 2001; 281: H1148–H1155.
- 27K. H. Wesseling, J. R. Jansen, J. J. Settels, and J. J. Schreuder, Computation of aortic flow from pressure in humans using a nonlinear, three-element model. J. Appl. Physiol. 1993; 74: 2566–2573.
- 28G. J. Langewouters, K. H. Wesseling, and W. J. Goedhard, The pressure dependent dynamic elasticity of 35 thoracic and 16 abdominal human aortas in vitro described by a five component model. J. Biomech. 1985; 18: 613–620.
- 29W. J. Stok, F. Baisch, A. Hillebrecht, H. Schulz, M. Meyer, and J. M. Karemaker, Noninvasive cardiac output measurement by arterial pulse analysis compared with inert gas rebreathing. J. Appl. Physiol. 1993; 74: 2687–2693.
- 30P. Laguna, G. B. Moody, and R. G. Mark, Power spectral density of unevenly sampled data by least-square analysis: performance and application to heart rate signals. IEEE Trans. Biomed. Eng. 1998; 45: 698–715.
- 31B. J. TenVoorde, J. C. Faes, and O. Rompelman, Spectra of data sampled at frequency-modulated rates in application to cardiovascular signals: Part 1. Analytical derivation of the spectra. Med. Biol. Eng. Comput. 1994; 32: 63–70.
- 32G. Mancia, G. Parati, P. Castiglioni, and M. Di Rienzo, Effect of sinoaortic denervation on frequency-domain estimates of baroreflex sensitivity in conscious cats. Am. J. Physiol. 1999; 276: H1987–H1993.
- 33Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Circulation 1996; 93:1043–1065.
- 34N. Montano, T. Gnecchi-Ruscone, A. Porta, F. Lombardi, A. Malliani. and S. M. Barman. Presence of vasomotor and respiratory rhythms in the discharge of single medullary neurons involved in the regulation of cardiovascular system. J. Auton. Nerv. Syst.1996 57: 116–122.
- 35R. W. deBoer, J. M. Karemaker, and J. Strackee, Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Physiol. 1987; 253: H680–H689.
- 36R. W. de Boer, J. H. Karemaker, and J. Strackee, Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects. I: A spectral analysis approach. Med. Biol. Eng. Comput. 1985a; 23: 352–358.
- 37R. E. Challis, and R. I., Kitney, Biomedical signal processing (in four parts). Part 3. The power spectrum and coherence function. Med. Biol. Eng. Comput. 1991; 29: 225–241.
- 38G. Baselli, S. Cerutti, S. Civardi, D. Liberati, F. Lombardi, A. Malliani, and M. Pagani, Spectral and cross-spectral analysis of heart rate and arterial blood pressure variability signals. Comput. Biomed. Res. 1986; 19: 520–534.
- 39S. J. Johnsen, and N. Andersen, On power estimation in maximum entropy spectral analysis. Geophysics 1978; 43: 681–690.
- 40M. Di Rienzo, G. Bertinieri, G. Mancia, and A. Pedotti, A new method for evaluating the baroreflex role by a joint pattern analysis of pulse interval and systolic blood pressure series. Med. Biol. Eng. Comput. 1985; 23 Suppl.1:313–314.
- 41M. Kobayashi and T. Musha, 1/f fluctuation of heartbeat period. IEEE Trans. Biomed. Eng. 1982; 29: 456–457.
- 42M. Di Rienzo, G. Parati, A. Pedotti and P. Castiglioni, (1997). 1/f modeling of blood pressure and heart rate spectra. In Frontiers of Blood Pressure and Heart Rate Analysis Amsterdam: IOS Press, pp. 45–53.
- 43L. Faes, G. D. Pinna, A. Porta, R. Maestri, and G. Nollo, Surrogate data analysis for assessing the significance of the coherence function. IEEE Trans. Biomed. Eng. 2004; 51: 1156–1166.
- 44R. W. de Boer, J. M. Karemaker, and J. Strackee, Relationships between short-term blood-pressure fluctuations and heart-rate variability in resting subjects. II: A simple model. Med. Biol. Eng. Comput. 1985b; 23: 359–364.
- 45Y. Katsube, H. Saro, M. Naka, B. H. Kim, N. Kinoshita, Y. Koretsune, and M. Hori, Decreased baroreflex sensitivity in patients with stable coronary artery disease is correlated with the severity of coronary narrowing. Am. J. Cardiol. 1996; 78: 1007–1010.
- 46M. T. La Rovere, G. D. Pinna, R. Maestri, A. Mortara, S. Capomolla, O. Febo, R. Ferrari, M. Franchini, M. Gnemmi, C. Opasich, P. G. Riccardi, E. Traversi, and F. Cobelli, Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 2003; 107: 565–570.
- 47T. G. Farrell, O. Odemuyiwa, Y. Bashir, T. R. Cripps, M. Malik, D. E. Ward, and A. J. Camm, Prognostic value of baroreflex sensitivity testing after acute myocardial infarction. Br. Heart J. 1992; 67: 129–137.
- 48G. Parati, R. M. Di, and G. Mancia, How to measure baroreflex sensitivity: From the cardiovascular laboratory to daily life. J. Hypertens. 2000; 18: 7–19.
- 49A. C. Guyton, T. G. Coleman, A. W. Cowley, Jr., J.F. Liard, R. A. Norman, Jr. and R. D. Manning, Jr. Systems analysis of arterial pressure regulation and hypertension. Ann. Biomed. Eng. 1972; 1: 254–281.
- 50K. H. S. J. Wesseling, (1995). Baromodulation explains short-term blood pressure variability. In: Psychophysiology of Cardiovascular Control. Models, Methods and Data. New York: Plenum, pp. 69–97.
- 51G. Parati, S. Omboni, D. Rizzoni, E. Gabiti-Rosei, and G. Mancia, The smoothness index: A new, reproducible and clinically relevant measure of the homogeneity of the blood pressure reduction with treatment for hypertension. J. Hypertens. 1988; 16: 1685–1691.
- 52B. E. Westerhof, J. Gisolf, W. J. Stok, K. H. Wesseling, and J. M. Karemaker. Time-domain cross-correlation baroreflex sensitivity: Performance on the EUROBAVAR data set. J Hypertens.2004 22: 1371–1380.
- 53M. Pagani, V. Somers, R. Furlan, S. Dell’Orto, J. Conway, G. Baselli, S. Cerutti, P. Sleight, and A. Malliani, Changes in autonomic regulation induced by physical training in mild hypertension. Hypertension 1988; 12: 600–610.
- 54H. W. Robbe, L. J. Mulder, H. Ruddel, W. A. Langewitz, J. B. Veldman, and G. Mulder, Assessment of baroreceptor reflex sensitivity by means of spectral analysis. Hypertension. 1987; 10: 538–543.
- 55B. J. TenVoorde, J. C. Faes, T. W. J. Janssen, G. J. Scheffer, and O. Rompelman, Respiratory modulation of blood pressure and heart rate studied with a computer model of baroreflex control. In: M. Di Rienzo, G. Mancia, G. Parati, A. Pedotti, and A. Zanchetti eds., Computer analysis of cardiovascular signals, Amsterdam: IOS Press, 1995, pp. 119–134.
- 56M. Ursino and E. Magosso, Short-term autonomic control of cardiovascular function: A mini-review with the help of mathematical models. J. Integr. Neurosci. 2003; 2: 219–247.
- 57G. Baselli, S. Cerutti, S. Civardi, A. Malliani, and M. Pagani, Cardiovascular variability signals: towards the identification of a closed-loop model of the neural control mechanisms. IEEE Trans. Biomed. Eng. 1988; 35: 1033–1046.
- 58D. J. Patton, J. K. Triedman, M. H. Perrott, A. A. Vidian, and J. P. Saul, Baroreflex gain: Characterization using autoregressive moving average analysis. Am. J. Physiol. 1996; 270: H1240–H1249.
- 59A. Porta, G. Baselli, O. Rimoldi, A. Malliani, and M. Pagani, Assessing baroreflex gain from spontaneous variability in conscious dogs: role of causality and respiration. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H255–H2567.
- 60G. Nollo, A. Porta, L. Faes, G. M. Del, M. Disertori, and F. Ravelli, Causal linear parametric model for baroreflex gain assessment in patients with recent myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 2001; 280: H1830–H1839.
- 61C. Cerutti, M. Ducher, P. Lantelme, M. P. Gustin, and C. Paultre, Assessment of spontaneous baroreflex sensitivity in rats a new method using the concept of statistical dependence. Am. J. Physiol. 1995; 268: R382–R388.
- 62M. Di Rienzo, P. Castiglioni, G. Mancia, A. Pedotti, and G. Parati, Advancements in estimating baroreflex function. IEEE Eng. Med. Biol. Mag. 2001; 20: 25–32.
- 63M. Di Rienzo, P. Castiglioni, G. Parati, G. Mancia, and A. Pedotti, The wide-band spectral analysis: A new insight into long term modulation of blood pressure, heart rate and baroreflex sensitivity. In: M. Di Rienzo, G. Mancia, G. Parati, A. Pedotti, and A. Zanchetti eds., Computer Analysis of Cardiovascular Signals Amsterdam: IOS Press, 2001, pp. 67–74.
- 64G. Bertinieri, M. Di Rienzo, A. Cavallazzi, A. U. Ferrari, A. Pedotti, and G. Mancia. Evaluation of baroreceptor reflex by blood pressure monitoring in unanesthetized cats. Am. J. Physiol.1988 254: H377–H383.
- 65G. Parati, A. Frattola, R. M. Di, P. Castiglioni, A. Pedotti, and G. Mancia, Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects. Am. J. Physiol. 1995; 268: H1606–H1612.
- 66M. Ducher, C. Cerutti, M. P. Gustin, and C. Z. Paultre, Statistical relationships between systolic blood pressure and heart rate and their functional significance in conscious rats. Med. Biol. Eng. Comput. 1994; 32: 649–655.
- 67M. Di Rienzo, P. Castiglioni, G. Parati, A. Frattola, G. Mancia, and A. Pedotti, Effects of 24-h modulation of baroreflex sensitivity on blood pressure variability. Computers in Cardiology 1993, 551-554. 1993. Loa Alamitos (CA), IEEE Computer Society Press. Ref Type: Conference Proceeding