Control of Starch Biosynthesis in Vascular Plants and Algae
Matthew K. Morell
Search for more papers by this authorZhongyi Li
Search for more papers by this authorAhmed Regina
Search for more papers by this authorSadiq Rahman
Search for more papers by this authorChristophe d'Hulst
Search for more papers by this authorSteven G. Ball
Search for more papers by this authorMatthew K. Morell
Search for more papers by this authorZhongyi Li
Search for more papers by this authorAhmed Regina
Search for more papers by this authorSadiq Rahman
Search for more papers by this authorChristophe d'Hulst
Search for more papers by this authorSteven G. Ball
Search for more papers by this authorWilliam C. Plaxton
Department of Biology, Queen's University Kingston, Ontario, Canada
Search for more papers by this authorMichael T. McManus
Institute of Molecular Bio Sciences, Massey University, Palmerston North, New Zealand
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Synthesis of bacterial glycogen
-
Synthesis of starch in vascular plants
-
Starch synthesis and breakdown in leaves and tubers
-
Control of starch biosynthesis in monocotyledonous species
-
Starch synthesis in green algae
-
Starch synthesis in other systems
-
Control of starch biosynthesis
-
Opportunities for the manipulation of starch synthesis and structure
-
Conclusions
References
- S. G. Ball and M. K. Morell, (2003) From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annual Reviews of Plant Biology 54, 207–233.
- S. Jobling, (2004) Improving starch for food and industrial applications. Current Opinion in Plant Biology 7, 210–218.
- I. J. Tetlow, M. K. Morell and M. J. Emes, (2004) Recent developments in understanding the regulation of starch metabolism in higher plants. Journal of Experimental Botany 55, 2131–2145.
- A. M. Myers, M. K. Morell, M. G. James and S. G. Ball, (2000) Recent progress toward understanding the biosynthesis of the amylopectin crystal. Plant Physiology 122, 989–998.
- M. A. Ballicora, A. A. Iglesias and J. Preiss, (2003) ADPglucose pyrophosphorylase, a regulatory enzyme for bacterial glycogen synthesis. Microbiology and Molecular Biology Reviews 67, 213–225.
- D. Dauvillee, I. S. Kinderf, Z. Y. Li, et al., (2005) Role of the Escherichia coli glgX gene in glycogen metabolism. Journal of Bacteriology 187, 1465–1473.
- A. M. Smith, (2001) The biosynthesis of starch granules. Biomacromolecules 2, 335–341.
- J. Preiss and M. Sivak, (1996) Starch synthesis in sinks and sources. In: Photoassimilate Distribution in Plants and Crops, Dekker, New York, pp. 63–69.
- P. S. Chourey and O. E. Nelson Jr., (1976) The enzymatic deficiency conditioned by the shrunken-1 mutations in maize. Biochemical Genetics 14, 1041–1055.
- H. P. Ghosh and J. Preiss, (1966) Adenosine diphosphate glucose pyrophosphorylase: a regulatory enzyme in the biosynthesis of starch in spinach leaf chloroplasts. Journal of Biological Chemistry 241, 4491–4504.
- L. A. Kleczkowski, P. Villand, E. Lüthi, O. A. Olsen and J. Preiss, (1993) Insensitivity of barley endosperm ADPglucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiology 101, 179–186.
- K. Denyer, F. Dunlap, T. Thorbjørnsen, P. Keeling and A. M. Smith, (1996) The major form of ADPglucose pyrophosphorylase in maize endosperm is extraplastidial. Plant Physiology 112, 779–783.
- T. Thorbjørnsen, P. Villand, K. Denyer, O. A. Olsen and A. M. Smith, (1996) Distinct isoforms of ADPglucose pyrophosphorylase occur inside and outside the amyloplasts in barley endosperm. Plant Journal 10, 243–250.
- R. A. Burton, P. E. Johnson, D. M. Beckles, et al., (2002) Characterization of the genes encoding the cytosolic and plastidial forms of ADPglucose pyrophosphorylase in wheat endosperm. Plant Physiology 130, 1464–1475.
- P. E. Johnson, N. J. Patron, A. R. Bottrill, et al., (2003) A low-starch barley mutant, riso 16, lacking the cytosolic small subunit of ADPglucose pyrophosphorylase, reveals the importance of the cytosolic isoform and the identity of the plastidial small subunit. Plant Physiology 131, 684–696.
- P. Crevillen, M. A. Ballicora, A. Merida, J. Preiss and J. M. Romero, (2003) The different large subunit isoforms of Arabidopsis thaliana ADPglucose pyrophosphorylase confer distinct kinetic and regulatory properties to the heterotetrameric enzyme. Journal of Biological Chemistry 278, 28508–28515.
- P. Crevillen, T. Ventriglia, F. Pinto, A. Orea, A. Merida and J. M. Romero, (2005) Differential pattern of expression and sugar regulation of Arabidopsis thaliana ADPglucose pyrophosphorylase-encoding genes. Journal of Biological Chemistry 280, 8143–8149.
- J. C. Shannon, F. M. Pien, H. Cao and K. C. Liu, (1998) Brittle-1, an adenylate translocator, facilitates transfer of extraplastidial synthesized ADPglucose into amyloplasts of maize endosperms. Plant Physiology 117, 1235–1252.
- N. J. Patron, B. Greber, B. F. Fahy, D. A. Laurie, M. L. Parker and K. Denyer, (2004) The lys5 mutations of barley reveal the nature and importance of plastidial ADP-Glc transporters for starch synthesis in cereal endosperm. Plant Physiology 135, 2088–2097.
- D. M. Beckles, A. M. Smith and T. ap Rees, (2001) A cytosolic ADPglucose pyrophosphorylase is a feature of graminaceous endosperms, but not of other starch storing organs. Plant Physiology 125, 818–827.
- D. M. Beckles, J. Craig and A. M. Smith, (2001) ADPglucose pyrophosphorylase is located in the plastid in developing tomato fruit. Plant Physiology 126, 261–266.
- E. Baroja-Fernandez, F. J. Munoz, A. Zandueta-Criado, et al., (2004) Most of ADPglucose linked to starch biosynthesis occurs outside the chloroplast in source leaves. Proceedings of the National Academy of Sciences of the United States of America 101, 13080–13085.
- T. Nakamura, P. Vrinten, K. Hayakawa and J. Ikeda, (1998) Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiology 118, 451–459.
- A. Edwards, J. P. Vincken, L. C. Suurs, et al., (2002) Discrete forms of amylose are synthesized by isoforms of GBSSI in pea. Plant Cell 14, 1767–1785.
- H. Tatge, J. Marshall, C. Martin, E. A. Edwards and A. M. Smith, (1999) Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers. Plant Cell and Environment 22, 543–550.
- K. Denyer, C. Sidebottom, C. M. Hylton and A. M. Smith, (1993) Soluble isoforms of starch synthase and starch-branching enzyme also occur within starch granules in developing pea embryos. Plant Journal 4, 191–198.
- K. Denyer, C. M. Hylton, C. F. Jenner and A. M. Smith, (1995) Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta 196, 256–265.
- S. Rahman, B. Kosar-Hashemi, M. S. Samuel, et al., (1995) The major proteins of wheat endosperm starch granules. Australian Journal of Plant Physiology 22, 793–803.
- M. K. Morell, B. Kosar-Hashemi, M. Cmiel, (2003) Barley sex6 mutants lack starch synthase IIa activity and contain a starch with novel properties. Plant Journal 34, 173–185.
- M. Yamamori, S. Fujita, K. Hayakawa, J. Matsuki and T. Yasui, (2000) Genetic elimination of a starch granule protein, SGP-1, of wheat generates an altered starch with apparent high amylose. Theoretical and Applied Genetics 101, 21–29.
- K. Denyer, D. Waite, S. Motawia, B. L. Moller and A. M. Smith, (1999) Granule-bound starch synthase I in isolated starch granules elongates malto-oligosaccharides processively. Biochemical Journal 340, 183–191.
- K. Denyer, D. Waite, A. Edwards, C. Martin and A. M. Smith, (1999) Interaction with amylopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides. Biochemical Journal 342, 647–653.
- M. Van de Wal, C. D'Hulst, J. P. Vincken, A. Buléon, R. Visser and S. Ball, (1998) Amylose is synthesized in vitro by extension of and cleavage from amylopectin. Journal of Biological Chemistry 273, 22232–22240.
- S. Ball, H. P. Guan, M. James, et al., (1996) From glycogen to amylopectin: a model explaining the biogenesis of the plant starch granule. Cell 86, 349–352.
- J. Craig, J. R. Lloyd, K. Tomlinson, et al., (1998) Mutations in the gene encoding starch synthase II profoundly alter amylopectin structure in pea embryos. Plant Cell 10, 413–426.
- T. Umemoto, M. Yano, H. Satoh, A. Shomura and Y. Nakamura, (2002) Mapping of a gene responsible for the difference in amylopectin structure between japonica-type and indica-type rice varieties. Theoretical and Applied Genetics 104, 1–8.
- X. Zhang, C. Colleoni, V. Ratushna, M. Sirghie-Colleoni, M. G. James and A. M. Myers, (2004) Molecular characterization demonstrates that the Zea mays gene sugary2 codes for the starch synthase isoform SSIIa. Plant Molecular Biology 54, 865–879.
- C. Harn, M. Knight, A. Ramakrishnan, H. Guan, P. L. Keeling and B. P. Wasserman, (1998) Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Molecular Biology 37, 639–649.
- M. Gao, J. Wanat, P. S. Stinard, M. G. James and A. M. Myers, (1998) Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell 10, 399–412.
- T. Fontaine, C. D'Hulst, M. L. Maddelein, et al., (1993) Toward an understanding of the biogenesis of the starch granule. Evidence that Chlamydomonas soluble starch synthase II controls the synthesis of intermediate size glucans of amylopectin. Journal of Biological Chemistry 268, 16223–1623.
- M. K. Bhattacharyya, A. M. Smith, T. H. Ellis, C. Hedley and C. Martin, (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch-branching enzyme. Cell 60, 115–122.
- S. A. Jobling, G. P. Schwall, R. J. Westcott, et al., (1999) A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: cloning and characterisation of multiple forms of SBE A. Plant Journal 18, 163–171.
- R. Safford, S. A. Jobling, C. M. Sidebottom, et al., (1998) Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydrate Polymers 35, 155–168.
- S. A. Jobling, C. Jarman, M. M. Teh, N. Holmberg, C. Blake and M. E. Verhoeyen, (2003) Immunomodulation of enzyme function in plants by single-domain antibody fragments. Nature Biotechnology 21, 77–80.
- G. P. Schwall, R. Safford, R. J. Westcott, et al., (2000) Production of very-high amylose potato starch by inhibition of SBE A and SBE B. Nature Biotechnology 18, 551–554.
- A. Regina, B. Kosar-Hashemi, Z. Li, et al., (2004) Multiple isoforms of starch branching enzyme 1 in wheat: lack of the major SBE 1 isoforms does not alter starch phenotype. Functional Plant Biology 31, 591–601.
- S. L. Blauth, K. N. Kim, J. Klucinec, J. C. Shannon, D. B. Thompson and M. Guiltinan, (2002) Identification of Mutator insertional mutants of starch-branching enzyme 1 (sbe1) in Zea mays L. Plant Molecular Biology 48, 287–297.
- H. Satoh, A. Nishi, K. Yamashita, et al., (2003) Starch-branching enzyme I-deficient mutation specifically affects the structure and properties of starch in rice endosperm. Plant Physiology 133, 1111–1121.
- K. N. Kim, D. K. Fisher, M. Gao and M. J. Guiltinan, (1998) Molecular cloning and characterization of the Amylose-Extender gene encoding starch branching enzyme IIB in maize. Plant Molecular Biology 38, 945–956.
- S. L. Blauth, Y. Yao, J. D. Klucinec, J. C. Shannon, D. B. Thompson and M. Guiltinan, (2001) Identification of Mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiology 125, 1396–1405.
- J. R. Dinges, C. Colleoni, M. G. James and A. M. Myers, (2003) Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism. Plant Cell 15, 666–680.
- R. Bustos, B. Fahy, C. M. Hylton, et al., (2004) Starch granule initiation is controlled by a hetero-multimeric isoamylase in potato tubers. Proceedings of the National Academy of Sciences of the United States of America 101, 2215–2220.
- E. Y. Lee, J. J. Marshall and W. J. Whelan, (1971) The substrate specificity of amylopectin-debranching enzymes from sweet corn. Archives of Biochemistry and Biophysics 143, 365–374.
- T. Delatte, M. Trevisan, M. L. Parker and S. C. Zeeman, (2005) Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distribution of amylopectin during starch synthesis. Plant Journal 41, 815–830.
- F. Wattebled, J. P. Ral, D. Dauvillée, et al., (2003) STA11 a Chlamydomonas locus required for normal starch granule biogenesis encodes disproportionating enzyme: further evidence for a function of 3-1,4 glucanotransferases during starch granule biosynthesis in green algae. Plant Physiology 132, 137–145.
- R. A. Burton, H. Jenner, L. Carrangis, et al., (2002) Starch granule initiation and growth are altered in barley mutants that lack isoamylase activity. Plant Journal 31, 97–112.
- A. Kubo, S. Rahman, Y. Utsumi, et al., (2004) Complementation of sugary-1 phenotype in rice endosperm with the wheat isoamylase1 gene supports a direct role for isoamylase1 in amylopectin biosynthesis. Plant Physiology 137, 43–56.
- C. Colleoni, D. Dauvillée, G. Mouille, et al., (1999) Genetic and biochemical evidence for the involvement of 3-1,4 glucanotransferases in amylopectin synthesis. Plant Physiology 120, 993–1003.
- C. Colleoni, D. Dauvillée, G. Mouille, et al., (1999) Biochemical characterization of the Chlamydomonas reinhardtii 3-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiology 120, 1005–1014.
- J. H. Critchley, S. C. Zeeman, T. Takaha, A. M. Smith and S. M. Smith, (2001) A critical role for disproportionating enzyme in starch breakdown is revealed by a knockout mutation in Arabidopsis. Plant Journal 26, 89–100.
- N. Schupp and P. Ziegler, (2004) The relation of starch phosphorylases to starch metabolism in wheat. Plant and Cell Physiology 45, 1471–1484.
- S. C. Zeeman, D. Thorneycroft, N. Schupp, et al., (2004) Plastidial alpha-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiology 135, 849–858.
- O. Pan and O. E. Nelson, (1984) A debranching enzyme deficiency in endosperms of the sugary-1 mutants of maize. Plant Physiology 74, 324–328.
- M. G. James, D. S. Robertson and A. M. Myers, (1995) Characterization of the maize gene sug-ary1, a determinant of starch composition in kernels. Plant Cell 7, 417–429.
- Y. Nakamura, T. Umemoto, Y. Takahata, et al., (1996) Changes in structure of starch and enzyme activities affected by sugary mutations. Possible role of starch debranching enzyme (R-enzyme) in amylopectin biosynthesis. Physiologia Plantarum 97, 491–948.
- G. Mouille, M. L. Maddelein, N. Libessart, et al., (1996) Phytoglycogen processing: a mandatory step for starch biosynthesis in plants. Plant Cell 8, 1353–1366.
- S. C. Zeeman, T. Umemoto, W. L. Lue, et al., (1998) A mutant of Arabidopsis lacking a chloroplastic isoamylase accumulates both starch and phytoglycogen. Plant Cell 10, 1699–1712.
- F. Wattebled, Y. Dong, S. Dumez, et al., (2005) Mutants of Arabidopsis lacking a chloroplastic isoamylase accumulate phytoglycogen and an abnormal form of amylopectin. Plant Physiology 138, 184–195.
- H. Hussain, A. Mant, R. Seale, et al., (2003) Three isoforms of isoamylase contribute different catalytic properties for the debranching of potato glucans. Plant Cell 15, 133–149.
- A. Kubo, N. Fujita, K. Harada, T. Matsuda, H. Satoh and Y. Nakamura, (1999) The starch-debranching enzymes isoamylase and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology 121, 399–410.
- T. S. Yu, H. Kofler, R. E. Hausler, et al., (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13, 1907–1918.
- S. C. Zeeman, A. Tiessen, E. Pilling, K. L. Kato, A. M. Donald and A. M. Smith, (2002) Starch synthesis in Arabidopsis. Granule synthesis, composition, and structure. Plant Physiology 129, 516–529.
- R. Lorberth, G. Ritte, L. Willmitzer and J. Kossmann, (1998) Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nature Biotechnology 16, 473–477.
- G. Ritte, R. Lorberth and M. Steup, (2000) Reversible binding of the starch-related R1 protein to the surface of transitory starch granules. Plant Journal 21, 387–391.
- G. Ritte, J. R. Lloyd, N. Eckermann, A. Rotmann, J. Kossmann and M. Steup, (2002) The starch related R1 protein is an 3-glucan, water dikinase. Proceedings of the National Academy of Sciences of the United States of America. 99, 1766–1771.
- R. Reimann, M. Hippler, B. Machelett and K. J. Appenroth, (2004) Light induces phosphorylation of glucan water dikinase, which precedes starch degradation in turions of the duckweed Spirodela polyrhiza. Plant Physiology 135, 121–128.
- O. Kotting, K. Pusch, A. Tiessen, P. Geigenberger, M. Steup and G. Ritte, (2005) Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiology 137, 242–252.
- L. Baunsgaard, H. Lutken, R. Mikkelsen, M. A. Glaring, T. T. Pham and A. Blennow, (2005) A novel isoform of glucan, water dikinase phosphorylates pre-phosphorylated alpha-glucans and is involved in starch degradation in Arabidopsis. Plant Journal 41, 595–605.
- A. Scheidig, A. Frohlich, S. Schulze, J. R. Lloyd and J. Kossmann, (2002) Downregulation of a chloroplast-targeted beta-amylase leads to a starch-excess phenotype in leaves. Plant Journal 30, 581–591.
- S. E. Weise, K. S. Kim, R. P. Stewart and T. D. Sharkey, (2005) Beta-maltose is the metabolically active anomer of maltose during transitory starch degradation. Plant Physiology 137, 756–761.
- S. E. Weise, A. P. Weber and T. D. Sharkey, (2004) Maltose is the major form of carbon exported from the chloroplast at night. Planta 218, 474–482.
- T. Niittyla, G. Messerli, M. Trevisan, J. Chen, A. M. Smith and S. C. Zeeman, (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303, 87–89.
- T. Chia, D. Thorneycroft, A. Chapple, et al., (2004) A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant Journal 37, 853–863.
- Y. Lu and T. D. Sharkey, (2004) The role of amylomaltase in maltose metabolism in the cytosol of photosynthetic cells. Planta 218, 466–473.
- M. A. Ballicora, J. B. Frueauf, Y. Fu, P. Schurmann and J. Preiss, (2000) Activation of the potato tuber ADPglucose pyrophosphorylase by thioredoxin. Journal of Biological Chemistry 275, 1315–1320.
- A. Tiessen, J. H. M. Hendriks, M. Stitt, et al., (2002) Starch synthesis in potato tuber is regulated by posttranslational redox modification of ADPglucose pyrophosphorylase. Plant Cell 14, 2191–2213.
- E. Pilling and A. M. Smith, (2003) Growth ring formation in the starch granules of potato tubers. Plant Physiology 132, 365–371.
- G. Tenorio, A. Orea, J. M. Romero and A. Merida, (2003) Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle. Plant Molecular Biology 51, 949–958.
- A. J. Slade, S. I. Fuerstenberg, D. Loeffler, M. N. Steine and D. Facciotti, (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nature Biotechnology 23, 75–81.
- M. Shure, S. Wessler and N. Fedoroff, (1983) Molecular identification and isolation of the Waxy locus in maize. Cell 35, 225–233.
- L. M. Wilson, S. R. Whitt, A. M. Ibanez, T. R. Rocheford, M. M. Goodman and E. S. Buckler 4th (2004) Dissection of maize kernel composition and starch production by candidate gene association. Plant Cell 16, 2719–2733.
- H. Jiang, W. Dian, F. Liu and P. Wu, (2004) Molecular cloning and expression analysis of three genes encoding starch synthase II in rice. Planta 218, 1062–1070.
- T. Hirose and T. Terao, (2004) A comprehensive expression analysis of the starch synthase gene family in rice (Oryza sativa L.). Planta 220, 9–16.
- H. S. Yoon, J. D. Hackett, C. Ciniglia, G. Pinto and D. Bhattacharya, (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Molecular Biology and Evolution 21, 809–818.
- G. I. McFadden and G. G. van Dooren, (2004) Evolution: red algal genome affirms a common origin of all plastids. Curent Biology 14, R514–R516
- E. Hirst, D. Manners and I. R. Pennie, (1972) 3-1,4-D-glucans part XXI - the molecular structure of starch-type polysaccharide from Haematococcus pluvialis and Tetraselmis carteriiformis. Carbohydrate Research 22, 5–11.
- J. Preiss and E. Greenberg, (1967) Biosynthesis of starch in Chlorella pyrenoidosa : I purification and properties of the adenosine diphosphoglucose: 3-1, 4-glucan, 3-4-glucosyl transferase from Chlorella. Archives of Biochemistry and Biophysics 118, 702–708.
- Y. Nakamura and M. Imamura, (1985) Regulation of ADPglucose pyrophosphorylase from Chlorella vulgaris. Plant Physiology 78, 601–605.
- Y. Nakamura and M. Imamura, (1983) Characteristics of a glucan phosphorylase from Chlorella vulgaris. Phytochemistry 22, 835–840.
-
S. G. Ball,
(2002)
The intricate pathway of starch biosynthesis and degradation in the monocellular alga Chlamydomonas reinhardtii : starch biosynthesis and degradation in Chlamydomonas reinhardtii.
Australian Journal of Chemistry
55,
1–11.
10.1071/CH02052 Google Scholar
- P. A. Lefebvre and C. D. Silflow, (1999) Chlamydomonas : the cell and its genomes. Genetics 151, 9–14.
- J. D. Rochaix, (2004) Genetics of the biogenesis and dynamics of the photosynthetic machinery in eukaryotes. Plant Cell 16, 1650–1660.
- K-H. Süss, I. Prokhorenko and K. Adler, (1995) In situ association of Calvin cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase activase, ferredoxin-NADP+ reductase, and nitrite reductase with thylakoid and pyrenoid membranes of Chlamydomonas reinhardtii chloroplasts as revealed by immunoelectron microscopy. Plant Physiology 107, 1387–1397.
- C. Thyssen, R. Schlichting and C. Giersch, (2001) The CO2-concentrating mechanism in the physiological context: lowering the CO2 supply diminishes culture growth and economises starch utilisation in Chlamydomonas reinhardtii. Planta 213, 629–639.
- C. Zabawinski, N. Van den Koornhuyse, C. D'Hulst, et al., (2001) Starchless mutants of Chlamy-domona reinhardtii lack the small subunit of an heterotetrameric ADPglucose pyrophosphorylase. Journal of Bacteriology 183, 1069–1077.
- U. Klein, (1987) Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiology 85, 892–897.
- N. Libessart, M. L. Maddelein, N. Van Den Koornhuyse, et al., (1995) Storage, photosynthesis and growth: the conditional nature of mutations affecting starch synthesis and structure in Chlamydomonas reinhardtii. Plant Cell 7, 1117–1127.
- S. G. Ball, L. Dirick, A. Decq, J. C. Martiat and R. F. Matagne, (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Science 66, 1–9.
- S. Ball, T. Marianne, L. Dirick, M. Fresnoy, B. Delrue and A. Decq, (1991) Chlamydomonas reinhardtii low-starch mutant is defective for 3-phosphoglycerate activation and orthophosphate inhibition of ADPglucose pyrophosphorylase. Planta 85, 17–26.
- N. Van den Koornhuyse, N. Libessart, B. Delrue, et al., (1996) Control of starch composition and structure through substrate supply in the monocellular alga Chlamydomonas reinhardtii. Journal of Biological Chemistry 271, 16281–16288.
- B. R. Clarke, K. Denyer, C. F. Jenner and A. M. Smith, (1999) The relationship between the rate of starch synthesis, the adenosine 5′-diphosphoglucose concentration and the amylose content of starch in developing pea embryos. Planta 209, 324–329.
- J. R. Lloyd, F. Springer, A. Buleon B. Muller-Rober, L. Willmitzer and J. Kossmann, (1999) The influence of alterations in ADPglucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta 209, 230–238.
- B. Delrue, T. Fontaine, F. Routier, et al., (1992) Waxy Chlamydomonas reinhardtii : monocellular algal mutants defective in amylose biosynthesis and granule-bound starch synthase activity accumulate a structurally modified amylopectin. Journal of Bacteriology 174, 3612–3620.
- D. Dauvillée, V. Mestre, C. Colleoni, et al., (2000) The debranching enzyme complex missing in glycogen accumulating mutants of Chlamydomonas reinhardtii displays an isoamylase-type specificity. Plant Science 157, 145–156.
- D. Dauvillee, C. Colleoni, G. Mouille, et al., (2001) Two loci control phytoglycogen production in the monocellular green alga Chlamydomonas reinhardtii. Plant Physiology 125, 1710–1722.
- D. Dauvillee, C. Colleoni, G. Mouille, et al., (2001) Biochemical characterization of wildtype and mutant isoamylases of Chlamydomonas reinhardtii supports a function of the multimeric enzyme organization in amylopectin maturation. Plant Physiology 125, 1723–1731.
- M. C. Posewitz, S. L. Smolinski, S. Kanakagiri, A. Melis, M. Seibert and M. L. Ghirardi, (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16, 2151–2163.
- F. Wattebled, A. Buléon, B. Bouchet, et al., (2002) Granule-bound starch synthase: a major enzyme involved in the biogenesis of B-crystallites in starch granules. European Journal of Biochemistry 269, 3810–3820.
- J. P. Ral, E. Derelle, C. Ferraz, et al., (2004) Starch division and partitioning a mechanism for granule propagation and maintenance in the picophytoplanktonic green alga Ostreococcus tauri. Plant Physiology 136, 3333–3340.
- S. Robbens, B. Khadaroo, A. Camasses, et al., (2005) Genomewide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Molecular Biology and Evolution 22, 589–597.
- M. Chatterjee, P. Berbezy, D. Vyas, S. Coates and T. Barsby, (2004) Reduced expression of a protein homologous to glycogenin leads to reduction of starch content in Arabidopsis leaves. Plant Science 168, 501–509.
- Y. Nakamura, J. Takahashi, A. Sakurai, et al., (2005) Some cyanobacteria synthesize semi-amylopectin type alpha-polyglucans instead of glycogen. Plant and Cell Physiology 46, 539–545.
- M. A. Schneegurt, D. M. Sherman and L. A. Sherman, (1997) Composition of the carbohydrate granules of the cyanobacterium, Cyanothece sp. strain ATCC 51142. Archives of Microbiology 167, 89–98.
- E. Melendez-Hevia, T. G. Waddell and D. E. Shelton, (1993) Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochemical Journal 295, 477–483.
- J. Preiss, (1984) Bacterial glycogen synthesis and its regulation. Annual Reviews of Microbiology 38, 419–458.
- J. Preiss and T. Romeo, (1994) Molecular biology and regulatory aspects of glycogen biosynthesis in bacteria. Progress in Nucleic Acid Research and Molecular Biology 47, 299–329.
- S. H. Yoo, M. H. Spalding and J. L. Jane, (2002) Characterization of cyanobacterial glycogen isolated from the wild type and from a mutant lacking of branching enzyme. Carbohydrate Research 337, 2195–2203.
- T. N. Palmer, G. Wober and W. J. Whelan, (1973) The pathway of exogenous and endogenous carbohydrate utilization in Escherichia coli: a dual function for the enzymes of the maltose operon. European Journal of Biochemistry 39, 601–612.
- M. C. Abad, K. Binderup, J. Rios-Steiner, R. K. Arni, J. Preiss and J. H. Geiger, (2002) The X-ray crystallographic structure of Escherichia coli branching enzyme. Journal of Biological Chemistry 277, 42164–42170.
- A. Buschiazzo, J. E. Ugalde, M. E. Guerin, W. Shepard, R. A. Ugalde and P. M. Alzari, (2004) Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO Journal 23, 3196–3205.
- J. E. Ugalde, A. J. Parodi and R. A. Ugalde, (2003) De novo synthesis of bacterial glycogen: agrobacterium tumefaciens glycogen synthase is involved in glucan initiation and elongation. Proceedings of the National Academy of Sciences of the United States of America 100, 10659–10663.
- R. Viola, P. Nyvall and M. Pedersen, (2001) The unique features of starch metabolism in red algae. Proceedings of the Royal Society of London B 268, 1417–1422.
- D. A. McCracken and J. R. Cain, (1981) Amylose in floridean starch. New Phytolytogist 88, 67–71.
- P. Nyvall, J. Pelloux, H. V. Davies, M. Pedersen and R. Viola, (1999) Purification and characterisation of a novel starch synthase selective for uridine 53-diphosphate glucose from the red alga Gracilaria tenuistipitata. Plant. 209, 143–152.
- A. Coppin, J. S. Varre, L. Lienard, et al., (2005) Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. Journal of Molecular Evolution 60, 257–267.
- A. O. Lluisma and M. A. Ragan, (1998) Cloning and characterization of a nuclear gene encoding a starch-branching enzyme from the marine red alga Gracilaria gracilis. Current Genetics 34, 105–111.
- W. Dian, H. Jiang, Q. Chen, F. Liu and P. Wu, (2003) Cloning and characterization of the granule-bound starch synthase II gene in rice: gene expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta 218, 261–268.
- S.-J. Wang, K.-W. Yeh and C.-Y. Tsai, (2001) Regulation of starch granule-bound starch synthase I gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Science 161, 635–644.
- S. M. Smith, D. C. Fulton, T. Chia, et al., (2004) Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiology 136, 2687–2699.
- Y. Fu, M. A. Ballicora, J. F. Leykam and J. Preiss, (1998) Mechanism of reductive activation of potato tuber ADPglucose pyrophosphorylase. Journal of Biological Chemistry 273, 25045–25052.
- J. H. M. Hendriks, A. Kolbe, Y. Gibon, M. Stitt and P. Geigenberger, (2003) ADPglucose pyrophosphorylase is activated by posttranslational redox-modification in response to light and to sugars in leaves of Arabidopsis and other plant species. Plant Physiology 133, 1–12.
- I. J. Tetlow, R. Wait, Z. Lu, et al., (2004) Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16, 694–708.
- M. K. Morell and A. M. Myers, (2005) Towards the rational design of cereal starches. Current Opinion in Plant Biology 6, 204–210.
- Q. Ji, J. P. Vincken, L. C. Suurs and R. G. Visser, (2003) Microbial starch-binding domains as a tool for targeting proteins to granules during starch biosynthesis. Plant Molecular Biology 51, 789–801.
- D. M. Stark, K. P. Timmermann, G. F. Barry, J. Preiss and G. M. Kishore, (1992) Regulation of the amount of starch in plant tissues by ADP glucose pyrophosphorylase. Science 258, 287–292.
- J. R. Shaw, J. M. Bae and L. C. Hannah, (1997) Elucidation of the alteration in the mutant brittle2-c (BT2-c). Maize Genetics Conference Abstracts, 39 (http://www.maizegdb.org/cgi-bin/dis-playrefrecord.cgi?id=133757).
- M. R. Bhave, S. Lawrence, C. Barton and L. C. Hannah, (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. Plant Cell 2, 581–588.
- T. D. Sullivan, L. I. Strelow, C. A. Illingworth, R. L. Phillips and O. E. Nelson Jr., (1991) Analysis of maize brittle-1 alleles and a defective suppressor-mutator-induced mutable allele. Plant Cell 3, 1337–1348.
- P. L. Dang and C. D. Boyer, (1989) Comparison of soluble starch synthases and branching enzymes from leaves and kernels of normal and amylose extender maize. Biochemical Genetics 27, 521–532.