Changes in Active Site Hydrogen Bonding upon Formation of the Electronically Excited State of Photoactive Yellow Protein
Wouter D. Hoff
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
Search for more papers by this authorZhouyang Kang
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Search for more papers by this authorMasato Kumauchi
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
Search for more papers by this authorAihua Xie
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Search for more papers by this authorWouter D. Hoff
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
Search for more papers by this authorZhouyang Kang
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Search for more papers by this authorMasato Kumauchi
Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK 74078, USA
Search for more papers by this authorAihua Xie
Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
Search for more papers by this authorKe-Li Han
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Search for more papers by this authorGuang-Jiu Zhao
State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Central Importance of Light in Biology
-
Possible Importance of Excited State Hydrogen Bonding in Photoreceptors
-
Introduction to Photoactive Yellow Protein
-
Hydrogen Bonding in the Initial State of PYP
-
Assignment of Vibrational Modes in PYP
-
Identification of Vibrational Structural Markers
-
Changes in Hydrogen Bonding During the Initial Stages of the PYP Photocycle
-
Sub-Picosecond Time-Resolved Transient Spectroscopy of PYP
-
Changes in Active Site Hydrogen Bonding upon the Formation of the S1 State of PYP
-
Excited State Proton Transfer in the Y42F Mutant of PYP
-
Acknowledgements
-
References
References
- J. K. Lanyi, Bacteriorhodopsin, Annu. Rev. Physiol., 66, 665–688 (2004).
- M. A. van der Horst and K. J. Hellingwerf, Photoreceptor proteins, “star actors of modern times”: a review of the functional dynamics in the structure of representative members of six different photoreceptor families, Acc. Chem. Res., 37, 13–20 (2004).
- M. A. van der Horst, J. Key and K. J. Hellingwerf, Photosensing in chemotrophic, non-phototrophic bacteria: let there be light sensing too, Trends Microbiol., 15, 554–562 (2007).
- A. Sancar, Structure and function of DNA photolyase and cryptochrome blue-light photoreceptors, Chem. Rev., 103, 2203–2237 (2003).
- A. Telfer, Too much light? How beta-carotene protects the photosystem II reaction centre, Photochem. Photobiol. Sci., 4, 950–956 (2005).
- J. T. M. Kennis and M. L. Groot, Ultrafast spectroscopy of biological photoreceptors, Curr. Opin. Struct. Biol., 17, 623–630 (2007).
- M. Gauden, I. H. M. van Stokkum, J. M. Key et al., Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor, Proc. Natl. Acad. Sci. USA, 103, 10895–10900 (2006).
- G. J. Zhao and K. L. Han, Effects of hydrogen bonding on tuning photochemistry: concerted hydrogen-bond strengthening and weakening, ChemPhysChem, 9, 1842–1846 (2008).
- T. E. Meyer, E. Yakali, M. A. Cusanovich and G. Tollin, Properties of a water-soluble, yellow protein isolated from a halophilic phototrophic bacterium that has photochemical activity analogous to sensory rhodopsin, Biochemistry, 26, 418–423 (1987).
- A. Xie, W. D. Hoff, A. R. Kroon and K. J. Hellingwerf, Glu46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein, Biochemistry, 35, 14671–14678 (1996).
- M. A. Cusanovich and T. E. Meyer, Photoactive yellow protein: a prototypic PAS domain sensory protein and development of a common signaling mechanism, Biochemistry, 42, 4759–4770 (2003).
- K. Hellingwerf, J. Hendriks and T. Gensch, Photoactive Yellow Protein, a new type of photoreceptor protein: Will this “yellow lab” bring us where we want to go? J. Phys. Chem. A, 107, 1082–1094 (2003).
- Y. Imamoto and M. Kataoka, Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily, Photochem. Photobiol., 83, 40–49 (2007).
- M. Kumauchi, M. Hara, P. Stalcup et al., Identification of six new photoactive yellow proteins: diversity and structure-function relationships in a bacterial blue light photoreceptor, Photochem. Photobiol., 84, 956–969 (2008).
- T. E. Meyer, Isolation and characterization of soluble cytochromes, ferredoxins and other chromophoric proteins from the halophilic phototrophic bacterium Ectothiorhodospira halophila, Biochim. Biophys. Acta, 806, 175–183 (1985).
- W. W. Sprenger, W. D. Hoff, J. P. Armitage and K. J. Hellingwerf, The eubacterium Ectothiorhodospira halophila is negatively phototactic, with a wavelength dependence that fits the absorption spectrum of the photoactive yellow protein, J. Bacteriol., 175, 3096–3104 (1993).
- W. D. Hoff, I. H. van Stokkum, H. J. van Ramesdonk et al., Measurement and global analysis of the absorbance changes in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila, Biophys. J., 67, 1691–1705 (1994).
- J. Hendriks, I. H. van Stokkum and K. J. Hellingwerf, Deuterium isotope effects in the photocycle transitions of the photoactive yellow protein, Biophys. J., 84, 1180–1191 (2003).
- B. Borucki, C. P. Joshi, H. Otto et al., The transient accumulation of the signaling state of photoactive yellow protein is controlled by the external pH, Biophys. J., 91, 2991–3001 (2006).
- W. D. Hoff, P. Dux, K. Hard et al., Thiol ester-linked p-coumaric acid as a new photoactive prosthetic group in a protein with rhodopsin-like photochemistry, Biochemistry, 33, 13959–13962 (1994).
- M. Baca, G. E. Borgstahl, M. Boissinot et al., Complete chemical structure of photoactive yellow protein: novel thioester-linked 4-hydroxycinnamyl chromophore and photocycle chemistry, Biochemistry, 33, 14369–14377 (1994).
- J. J. van Beeumen, B. V. Devreese, S. M. van Bun et al., Primary structure of a photoactive yellow protein from the phototrophic bacterium Ectothiorhodospira halophila, with evidence for the mass and the binding site of the chromophore, Protein Sci., 2, 1114–1125 (1993).
- W. D. Hoff, B. Devreese, R. Fokkens et al., Chemical reactivity and spectroscopy of the thiol ester-linked p-coumaric acid chromophore in the photoactive yellow protein from Ectothiorhodospira halophila, Biochemistry, 35, 1274–1281 (1996).
- G. E. Borgstahl, D. R. Williams and E. D. Getzoff, 1.4 Å structure of photoactive yellow protein, a cytosolic photoreceptor: unusual fold, active site, and chromophore, Biochemistry, 34, 6278–6287 (1995).
- J. L. Pellequer, K. A. Wager-Smith, S. A. Kay and E. D. Getzoff, Photoactive yellow protein: a structural prototype for the three-dimensional fold of the PAS domain superfamily, Proc. Natl. Acad. Sci. USA, 95, 5884–5890 (1998).
- B. L. Taylor and I. B. Zhulin, PAS domains: internal sensors of oxygen, redox potential, and light, Microbiol. Mol. Biol. Rev., 63, 479–506 (1999).
- M. H. Hefti, K. J. Francoijs, S. C. de Vries et al., The PAS fold – a redefinition of the PAS domain based upon structural prediction, Eur. J. Biochem., 271, 1198–1208 (2004).
- M. Kim, R. A. Mathies, W. D. Hoff and K. J. Hellingwerf, Resonance Raman evidence that the thioester-linked 4-hydroxycinnamyl chromophore of photoactive yellow protein is deprotonated, Biochemistry, 34, 12669–12672 (1995).
- R. Kort, H. Vonk, X. Xu et al., Evidence for trans-cis isomerization of the p-coumaric acid chromophore as the photochemical basis of the photocycle of photoactive yellow protein, FEBS Lett., 382, 73–78 (1996).
- R. Kort, K. J. Hellingwerf and R. B. Ravelli, Initial events in the photocycle of photoactive yellow protein, J. Biol. Chem., 279, 26417–26424 (2004).
- S. Anderson, V. Srajer and K. Moffat, Structural heterogeneity of cryotrapped intermediates in the bacterial blue light photoreceptor, photoactive yellow protein, Photochem. Photobiol., 80, 7–14 (2004).
- D. S. Larsen and R. van Grondelle, Initial photoinduced dynamics of the photoactive yellow protein, ChemPhysChem, 6, 828–837 (2005).
- A. Xie, L. Kelemen, J. Hendriks et al., Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation, Biochemistry, 40, 1510–1517 (2001).
- Y. Imamoto, K. Mihara, O. Hisatomi et al., Evidence for proton transfer from Glu-46 to the chromophore during the photocycle of photoactive yellow protein, J. Biol. Chem., 272, 12905–12908 (1997).
- T. E. Meyer, G. Tollin, J. H. Hazzard and M. A. Cusanovich, Photoactive yellow protein from the purple phototrophic bacterium, Ectothiorhodospira halophila. Quantum yield of photobleaching and effects of temperature, alcohols, glycerol, and sucrose on kinetics of photobleaching and recovery, Biophys. J., 56, 559–564 (1989).
- W. D. Hoff, A. Xie, I. H. van Stokkum et al., Global conformational changes upon receptor stimulation in photoactive yellow protein, Biochemistry, 38, 1009–1017 (1999).
- B. C. Lee, A. Pandit, P. A. Croonquist and W. D. Hoff, Folding and signaling share the same pathway in a photoreceptor, Proc. Natl. Acad. Sci. USA, 98, 9062–9067 (2001).
- B. C. Lee, P. A. Croonquist, T. R. Sosnick and W. D. Hoff, PAS domain receptor photoactive yellow protein is converted to a molten globule state upon activation, J. Biol. Chem., 276, 20821–20823 (2001).
- Y. Imamoto, H. Kamikubo, M. Harigai et al., Light-induced global conformational change of photoactive yellow protein in solution, Biochemistry, 41, 13595–13601 (2002).
- J. M. Zhao, H. Lee, R. A. Nome et al., Single-molecule detection of structural changes during Per-Arnt-Sim (PAS) domain activation, Proc. Natl. Acad. Sci. USA, 103, 11561–11566 (2006).
- G. Rubinstenn, G. W. Vuister, F. A. Mulder et al., Structural and dynamic changes of photoactive yellow protein during its photocycle in solution, Nat. Struct. Biol., 5, 568–570 (1998).
- C. Bernard, K. Houben, N. M. Derix et al., The solution structure of a transient photoreceptor intermediate: Delta25 photoactive yellow protein, Structure, 13, 953–962 (2005).
- M. E. van Brederode, W. D. Hoff, I. H. van Stokkum et al., Protein folding thermodynamics applied to the photocycle of the photoactive yellow protein, Biophys. J., 71, 365–380 (1996).
- N. Derix, R. Wechselberger, M. A. van der Horst et al., Lack of negative charge in the E46Q mutant of photoactive yellow protein prevents partial unfolding of the blue-shifted intermediate, Biochemistry, 42, 14501–14506 (2003).
- S. Anderson, S. Crosson, K. Moffat, Short hydrogen bonds in photoactive yellow protein, Acta Crystallogr. D Biol. Crystallogr., 60, 1008–1016 (2004).
- T. Kortemme, A. V. Morozov, D. Baker, An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes, J. Mol. Biol., 326, 1239–1259 (2003).
- S. Yamaguchi, H. Kamikubo, K. Kurihara et al., Low-barrier hydrogen bond in photoactive yellow protein, Proc. Natl. Acad. Sci. USA, 106, 440–444 (2009).
- S. Z. Fisher, S. Anderson, R. Henning et al., Neutron and X-ray structural studies of short hydrogen bonds in photoactive yellow protein (PYP), Acta Crystallogr. D Biol. Crystallogr., 63, 1178–1184 (2007).
- B. Nie, J. Stutzman and A. Xie, A vibrational spectral marker for probing the hydrogen bonding status of protonated Asp and Glu residues, Biophys. J., 88, 2833–2847 (2005).
- A. R. Kroon, W. D. Hoff, H. P. Fennema et al., Spectral tuning, fluorescence, and photoactivity in hybrids of photoactive yellow protein, reconstituted with native or modified chromophores, J. Biol. Chem., 271, 31949–31956 (1996).
- W. D. Hoff, I. H. M. van Stokkum, J. Gural and K. J. Hellingwerf, Comparison of acid denaturation and light activation in the eubacterial blue-light receptor photoactive yellow protein, Biochim. Biophys. Acta, 1322, 151–162 (1997).
- R. L. Thurlkill, G. R. Grimsley, J. M. Scholtz and C. N. Pace, pK values of the ionizable groups of proteins, Protein Sci., 15, 1214–1218 (2006).
- T. E. Meyer, S. Devanathan, T. T. Woo et al., Site-specific mutations provide new insights into the origin of pH effects and alternative spectral forms in the photoactive yellow protein from Halorhodospira halophilia, Biochemistry, 42, 3319–3325 (2003).
- Y. Imamoto, H. Koshimizu, K. Mihara et al., Roles of amino acid residues near the chromophore of photoactive yellow protein, Biochemistry, 40, 4679–4685 (2001).
- A. F. Philip, K. T. Eisenman, G. A. Papadantonakis and W. D. Hoff, Functional tuning of photoactive yellow protein by active site residue 46, Biochemistry, 47, 13800–13810 (2008).
- M. Sugishima, N. Tanimoto, K. Soda et al., Structure of photoactive yellow protein (PYP) E46Q mutant at 1.2 Å resolution suggests how Glu46 controls the spectroscopic and kinetic characteristics of PYP, Acta Crystallogr. D Biol. Crystallogr., 60, 2305–2309 (2004).
- U. K. Genick, S. Devanathan, T. E. Meyer et al., Active site mutants implicate key residues for control of color and light cycle kinetics of photoactive yellow protein, Biochemistry, 36, 8–14 (1997).
- K. Mihara, O. Hisatomi, Y. Imamoto et al., Functional expression and site-directed mutagenesis of photoactive yellow protein, J. Biochem., 121, 876–880 (1997).
- Y. Imamoto, Y. Shirahige, F. Tokunaga et al., Low-temperature Fourier transform infrared spectroscopy of photoactive yellow protein, Biochemistry, 40, 8997–9004 (2001).
- M. Unno, M. Kumauchi, J. Sasaki et al., Resonance Raman spectroscopy and quantum chemical calculations reveal structural changes in the active site of photoactive yellow protein, Biochemistry, 41, 5668–5674 (2002).
- D. H. Pan, A. Philip, W. D. Hoff and R. A. Mathies, Time-resolved resonance Raman structural studies of the pB′ intermediate in the photocycle of photoactive yellow protein, Biophys. J., 86, 2374–2382 (2004).
- M. Unno, M. Kumauchi, F. Tokunaga and S. Yamauchi, Vibrational assignment of the 4-hydroxycinnamyl chromophore in photoactive yellow protein, J. Phys. Chem. B, 111, 2719–2726 (2007).
- M. Unno, M. Kumauchi, J. Sasaki et al., Evidence for a protonated and cis configuration chromophore in the photobleached intermediate of photoactive yellow protein, J. Am. Chem. Soc., 122, 4233–4234 (2000).
- M. Unno, M. Kumauchi, J. Sasaki et al., Assignment of resonance Raman spectrum of photoactive yellow protein in its long-lived blue-shifted intermediate, J. Phys. Chem. B, 107, 2837–2845 (2003).
- W. D. Hoff, S. L. S. Kwa, R. van Grondelle and K. J. Hellingwerf, Low temperature absorbance and fluorescence spectroscopy of the photoactive yellow protein from Ectothiorhodospira halophila, Photochem. Photobiol., 56, 529–539 (1992).
- R. Brudler, R. Rammelsberg, T. T. Woo et al., Structure of the I1 early intermediate of photoactive yellow protein by FTIR spectroscopy, Nat. Struct. Biol., 8, 265–270 (2001).
- D. Hoersch, H. Otto, M. A. Cusanovich and M. P. Heyn, Distinguishing chromophore structures of photocycle intermediates of the photoreceptor PYP by transient fluorescence and energy transfer, J. Phys. Chem. B, 112, 9118–9125 (2008).
- L. M. Groot, L. J. G. W. van Wilderen, D. S. Larsen et al., Initial steps of signal generation in photoactive yellow protein revealed with femtosecond mid-infrared spectroscopy, Biochemistry, 42, 10054–10059 (2003).
- K. Heyne, O. F. Mohammed, A. Usman et al., Structural evolution of the chromophore in the primary stages of trans/cis isomerization in photoactive yellow protein, J. Am. Chem. Soc., 127, 18100–18106 (2005).
- L. van Wilderen, M. A. van der Horst and I. H. M. van Stokkum et al., Ultrafast infrared spectroscopy reveals a key step for successful entry into the photocycle for photoactive yellow protein, Proc. Natl. Acad. Sci. USA, 103, 15050–15055 (2006).
- Chosrowjan H., Mataga N., Nakashima N. et al., Femtosecond-picosecond fluorescence studies on excited state dynamics of photoactive yellow protein from Ectothiorhodospira halophila, Chem. Phys. Lett., 270, 267–272 (1997).
- M. Vengris, M. A. van der Horst, G. Zgrablic et al., Contrasting the excited-state dynamics of the photoactive yellow protein chromophore: protein versus solvent environments, Biophys. J., 87, 1848–1857 (2004).
- P. Changenet, H. Zhang, M. J. van der Meer et al., Subpicosecond fluorescence upconversion measurements of primary events in yellow proteins, Chem. Phys. Lett., 282, 276–282 (1998).
- H. Hanada, Y. Kanematsu, S. Kinoshita et al., Ultrafast fluorescence spectroscopy of photoactive yellow protein, J. Lumin., 94–95 593–596 (2001).
- N. Mataga, H.,Y. Shibata et al., Ultrafast photoinduced reaction dynamics of photoactive yellow protein (PYP): observation of coherent oscillations in the femtosecond fluorescence decay dynamics, Chem. Phys. Lett., 352, 220–225 (2002).
- R. Nakamura, N. Hamada, H. Ichida et al., Coherent oscillations in ultrafast fluorescence of photoactive yellow protein, J. Chem. Phys., 127, 215102 (2007).
- N. Mataga, H. Chosrowjan, Y. Shibata et al., Effects of modification of protein nanospace structure and change of temperature on the femtosecond to picosecond fluorescence dynamics of photoactive yellow protein, J. Phys. Chem., 104, 5191–5199 (2000).
- N. Mataga, H. Chosrowjan, S. Taniguchi et al., Ultrafast photoreactions in protein nanospaces as revealed by fs fluorescence dynamics measurements on photoactive yellow protein and related systems, Phys. Chem. Chem. Phys., 5, 2454–2460 (2003).
- R. Nakamura, Y. Kanematsu, M. Kumauchi et al., Photo-induced protein dynamics measured by femtosecond time-resolved luminescence, J. Lumin., 102, 21–26 (2003).
- H. Chosrowjan, S. Taniguchi, N. Mataga et al., Low-frequency vibrations and their role in ultrafast photoisomerization reaction dynamics of photoactive yellow protein, J. Phys. Chem. B, 108, 2686–2698 (2004).
- A. Xie, L. Meer, W. Hoff and R. H. Austin, Long-lived amide I vibrational modes in myoglobin, Phys. Rev. Lett., 84, 5435–5438 (2000).
- D. S. Larsen, I. H. van Stokkum, M. Vengris et al., Incoherent manipulation of the photoactive yellow protein photocycle with dispersed pump-dump-probe spectroscopy, Biophys. J., 87, 1858–1872 (2004).
- T. Gensch, C. C. Gradinaru, I. H. M. van Stokkum et al., The primary photoreaction of photoactive yellow protein (PYP): anisotropy changes and excitation wavelength dependence, Chem. Phys. Lett., 356, 347–354 (2002).
- Y. Imamoto, M. Kataoka, F. Tokunaga et al., Primary photoreaction of photoactive yellow protein studied by subpicosecond-nanosecond spectroscopy, Biochemistry, 40, 6047–6052 (2001).
- S. Devanathan, A. Pacheco, L. Ujj et al., Femtosecond spectroscopic observations of initial intermediates in the photocycle of the photoactive yellow protein from Ectothiorhodospira halophila, Biophys. J., 77, 1017–1023 (1999).
- A. Baltuška, I. H. M. van Stokkum, A. Kroon et al., The primary events in the photoactivation of yellow protein, Chem. Phys. Lett., 270, 263–266 (1997).
- F. Gai, K. C. Hasson, J. C. McDonald and P. A. Anfinrud, Chemical dynamics in proteins: The photoisomerization of retinal in bacteriorhodopsin, Science, 279, 1886–1891 (1998).
- M. E. van Brederode, T. Gensch, W. D. Hoff et al., Photoinduced volume change and energy storage associated with the early transformations of the photoactive yellow protein from Ectothiorhodospira halophila, Biophys. J., 68, 1101–1109 (1995).
- L. L. Premvardhan, M. A. van der Horst, K. J. Hellingwerf and R. van Grondelle, Stark spectroscopy on photoactive yellow protein, E46Q, and a nonisomerizing derivative, probes photo-induced charge motion, Biophys. J., 84, 3226–3239 (2003).
- M. Mizuno, N. Hamada, F. Tokunaga and Y. Mizutani, Picosecond protein response to the chromophore isomerization of photoactive yellow protein: selective observation of tyrosine and tryptophan residues by time-resolved ultraviolet resonance Raman spectroscopy, J. Phys. Chem. B, 111, 6293–6296 (2007).
- T. E. Meyer, G. Tollin, P. Causgrove et al., Picosecond decay kinetics and quantum yield of fluorescence of the photoactive yellow protein from the halophilic purple phototrophic bacterium, Ectothiorhodospira halophila, Biophys. J., 59, 988–991 (1991).
- L. Ujj, S. Devanathan, T. E. Meyer et al., New photocycle intermediates in the photoactive yellow protein from Ectothiorhodospira halophila: picosecond transient absorption spectroscopy, Biophys. J., 75, 406–412 (1998).
- P. Changenet-Barret, P. Plaza, M. M. Martin et al., Role of arginine 52 on the primary photoinduced events in the PYP photocycle, Chem. Phys. Lett., 434, 320–325 (2007).
- C. P. Joshi, H. Otto, D. Hoersch et al., Strong hydrogen bond between glutamic acid 46 and chromophore leads to the intermediate spectral form and excited state proton transfer in the Y42F mutant of the photoreceptor photoactive yellow protein, Biochemistry, 48, 9980–9993 (2009).