Synthesis and Characterization of Cubic Silicon Carbide (β-SiC) and Trigonal Silicon Nitride (α-Si3N4) Nanowires
Karine Saulig-Wenger
Search for more papers by this authorMikhael Bechelany
Search for more papers by this authorDavid Cornu
Search for more papers by this authorSamuel Bernard
Search for more papers by this authorFernand Chassagneux
Search for more papers by this authorPhilippe Miele
Search for more papers by this authorThierry Epicier
Search for more papers by this authorKarine Saulig-Wenger
Search for more papers by this authorMikhael Bechelany
Search for more papers by this authorDavid Cornu
Search for more papers by this authorSamuel Bernard
Search for more papers by this authorFernand Chassagneux
Search for more papers by this authorPhilippe Miele
Search for more papers by this authorThierry Epicier
Search for more papers by this authorThe American Ceramic Society
Search for more papers by this authorThe American Ceramic Society
Search for more papers by this authorSummary
By varying the final heating temperature in the range 1050°C - 1300°C, cubic silicon carbide (β-SiC) and/or trigonal silicon nitride (α-Si3N4) nanowires (NWs) were prepared by direct thermal treatment under nitrogen, of commercial silicon powder and graphite. Long and highly curved β-SiC NWs were preferentially grown below 1200°C, while straight and short α-Si3N4 NWs were formed above 1300°C. Between these two temperatures, a mixture of both nanowires was obtained. The structure and chemical composition of these nanostructures have been investigated by SEM, HRTEM, EDX and EELS.
References
- E.W. Wong, P.E. Sheehan, C.M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes”, Science, 277, 1971–1975 (1997).
- Y. Zhang, N. Wang, R. He, Q. Zhang, J. Zhu, Y. Yan, “Reversible bending of Si3 N4 nanowire” J. Mater. Res., 15, 1048–1051. (2000)
- K. W. Wong, X. T. Zhou, F. C. K. Au, H. L. Lai, C. S. Lee, S. T. Lee, “Field-emission characteristics of SiC nanowires prepared by chemical-vapor deposition”, Appl. Phys. Lett., 75, 2918–2920.(1999)
- Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C.-S. Lee, N.-B. Wong, S.-. Lee, S. Xie, “Oriented silicon carbide nanowires: synthesis and field emission properties”, Adv. Mater., 12, 1186–1190. (2000)
- D.P. Yu, L. Hang, Y. Ding, H.Z. Zhang, Z.G. Bai, J.J. Wang, Y.H. Zou, W. Qian, G.C. Xiong, S.Q. Feng, “Amorphous silica nanowires: intensive blue light emitters”, Appl. Phys. Lett., 73, 3076-3078(1998)
- W. Han, S. Fan, Q. Li, W. Liang, B. Gu, D. Yu, “Continuous synthesis and characterization of silicon carbide nanorods”, Chem. Phys. Lett., 265, 374–378 (1997)
- C. C. Tang, S. S. Fan, H. Y. Dang, J. H. Zhao, C. Zhang, P. Li, Q. Gu, “Growth of SiC nanorods prepared by carbon nanotubes-confined reaction”, J. Cryst. Growth, 210, 595–599. (2000)
- J-M. Nhut, R. Vieira, L. Pesant, J-P. Tessonnier, N. Keller, G. Ehret, C. Pham-Huu, M. J. Ledoux, “Synthesis and catalytic uses of carbon and silicon carbide nanostructures”, Catal. Today, 76, 11–32. (2002)
- J. Pelous, M. Foret, R. Vacher, “Colloidal vs. polymeric aerogels: structure and vibrational modes”, J. Non-Cryst. Solids, 145, 63–70. (1992)
- X. T. Zhou, H. L. Lai, H. Y. Peng, F. C. K. Au, L. S. Liao, N. Wang, I. Bello, C. S. Lee, S. T. Lee, “Thin β-SiC nanorods and their field emission properties”, Chem. Phys. Lett., 318, 58-62. (2000)
- B. Q. Wei, J. W. Ward, R. Vajtai, P. M. Azjayan, R. Ma, G. Ramanath, “Simultineous growth of silicon carbide nanorods and carbon nanotubes by chemical vapor deposition” Chem. Phys. Lett., 354, 264–268. (2002)
- X. T. Zhou, N. Wang, H. L. Lai, H. Y. Peng, I. Bello, N. B. Bello, N. B. Wong, C. S. Lee, S. T. Lee, “β-SiC nanorods synthesized by hot filament chemical vapor deposition” Appl. Phys. Lett., 74, 3942–3944. (1999)
- H. L. Lai, N. B. Wong, X. T. Zhou, H. Y. Peng, F. C. K. Au, N. Wang, I. Bello, C. S. Lee, S. T. Lee, X. F. Duan, “Straight a-SiC nanorods synthesized by using C-Si-SiO2”, Appl. Phys. Lett., 76, 294–296.(2000)
- Y. Zhang, N. L. Wang, R. He, X. Chen, J. Zhu, “Synthesis of SiC nanorods using floating catalyst”, Solid State Comm., 118, 595–598. (2001)
- L. D. Zhang, G. W. Meng, F. Phillipp, “Synthesis and characterization of nanowires and nanocables”, Mater. Sci. and Eng. A, 286, 34–38 (2000)
- X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, J. J. Du, “Simultaneous growth of α-Si3 N4 and β-SiC nanorods” Mater. Res. Bull., 36, 847–852 (2001)
- X. C. Wu, W. H. Song,B. Zhao, W. D. Huang, M. H. Pu, Y. P. Sun, J. J. Du, “Synthesis of coaxial nanowires of silicon nitride sheathed with silicon and silicon oxide”, Solid State Comm., 115, 683–686 (2000)
- Y. H. Gao, Y. Bando, K. Kurashima, T. Sato, “Synthesis and microstructural analysis of Si3 N4 nanorods”, Microsc. Microanal., 8, 5–10. (2002)
- Y. H. Gao, Y. Bando, K. Kurashima, T. Sato, “Si3 N4/SiC interface structure in SiC-nanocrystal-embedded α-Si3 N4 nanorods”, J. Appl. Phys., 91, 1515–1519. (2002)
- W. Han, S. Fan, Q. Li, B. Gu, X. Zhang, D. Yu, “Synthesis of silicon nitride nanorods using carbon nanotube as a template”, Appl Phys. Lett, 71, 2271–2273 (1997)
- H. Young Kim, J. Park, H. Yang, “Synthesis of silicon nitride nanowires directly from the silicon substrates”, Chem. Phys. Lett, 372, 269–274. (2003)
- K. Saulig-Wenger, D. Cornu, F. Chassagneux, G. Ferro, T. Epicier, P. Miele, “Direct synthesis of β-SiC and h-BN coated β-SiC nanowires”, Solid State Comm., 124, 157–161 (2002)
- K. Saulig-Wenger, D. Cornu, F. Chassagneux, G. Ferro, P. Miele, T. Epicier, “Synthesis and characterization of β-SiC nanowires and h-BN sheathed β-SiC nanocables”, Ceramic Transactions, (Ceramic Nanomaterials and Nanotechnology) 137, 93–99. (2003)
- K. Saulig-Wenger, D. Cornu, F. Chassagneux, T. Epicier, P. Miele, “Direct synthesis of amorphous silicon dioxide nanowires and helical self-assembled nanostructures derived therefrom”, J. Mater Chem., 13, 3058-3061. (2003)
- K. Saulig-Wenger, D. Cornu, P. Miele, F. Chassagneux, S. Parola, T. Epicier, “Synthesis of Si-based nanowires”, Ceramic Transactions, (Ceramic Nanomaterials and Nanotechnology II) 148, 131–137. (2004)