Dynamics of Radical Pair Processes in Bulk Polymers
Carlos A. Chesta
Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
Search for more papers by this authorRichard G. Weiss
Department of Chemistry, Georgetown University, Washington, DC, USA
Search for more papers by this authorCarlos A. Chesta
Departamento de Química, Universidad Nacional de Río Cuarto, Río Cuarto, Argentina
Search for more papers by this authorRichard G. Weiss
Department of Chemistry, Georgetown University, Washington, DC, USA
Search for more papers by this authorMalcolm D. E. Forbes
Department of Chemistry, University of North Carolina, Chapel Hill, NC, USA
Search for more papers by this authorSummary
This chapter contains sections titled:
-
Introduction
-
Singlet-State Radical Pairs from Irradiation of Aryl Esters and Alkyl Aryl Ethers
-
Photo-Reactions of Aryl Esters in Polymer Matrices. Kinetic Information from Constant Intensity Irradiations
-
Rate Information from Constant Intensity Irradiation of Alkyl Aryl Ethers
-
Comparison of Calculated Rates to Other Methods for Polyethylene Films
-
Triplet-State Radical Pairs
-
Concluding Remarks
REFERENCES
- (a) Weiss, R. G.; Ramamurthy, V.; Hammond, G. S. Acc. Chem. Res. 1993, 26, 530. (b) Ramamurthy, V.; Weiss, R. G.; Hammond, G. S. Adv. Photochem. 1993, 18, 67.
- A classic example is the first intermediates along the reaction pathway of Norrish-Yang (Type II) reactions. See for example: (a) Wagner, P. J.; Wagner, P. J.; Park, B. -S. Org. Photochem. 1991, 11, 227. (b) Acc. Chem. Res. 1989, 22, 83. (c) Wagner, P. J. Top. Curr. Chem. 1976, 6, 1. (d) Turro, N. J.; Dalton, J. C.; Dawes, K.; Farrington, G.; Hautala, D.; Morton, D.; Niemczyk, M.; Schore, N. Acc. Chem. Res. 1972, 5, 92. (e) Yang, C.; Elliott, S. P. J. Am. Chem. Soc. 1969, 91, 7550. (f) Stephenson, L. M.; Cavigli, P. R.; Parlett, J. L. J. Am. Chem. Soc. 1971, 93, 1984.
- See for example: Zhang, G.-H.; Thomas, J. K. J. Phys. Chem. A 1998, 102, 5465.
- See for example: Miyasaka, H.; Khan, S. R.; Itaya, A. J. Photochem. Photobiol. C Photochem. Rev. 2003, 4, 195.
- Guillet, J. Polymer Photophysics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules; Cambridge University Press: New York, 1985.
-
M. A. Winnik Ed.; Photophysical and Photochemical Tools in Polymer Science: Conformation, Dynamics, Morphology; Reidel Pub. Co.: Hingham, MA, 1986.
10.1007/978-94-009-4726-9 Google Scholar
- J. Brandrup; E. H. Immergut; E. A. Grulke, Eds.; Polymer Handbook; Wiley: New York, 1999.
- (a) Vieth, W. R. Diffusion in and Through Polymers; Hanser: New York, 1991. (b) J. Comyn, Ed.; Polymer Permeability; Elsevier: New York, 1985. (c) P. Neogi, Ed.; Diffusion in Polymers; Marcel Dekker: New York, 1996.
- (a) S. Matsuoka, Ed.; Relaxation Phenomena in Polymers; Hanser: New York, 1992. (b) G. M. Bartenev; Yu. V. Zelenev, Eds.; Relaxation Phenomena in Polymers; Keterpress: Jerusalem, 1974.
- (a) Angell, C. A.; Ngai, K. L.; McKenna, G. B.; McMillan, P. F.; Martin, S. W. J. Appl. Phys. 2000, 66, 3113. (b) Florey, A.; McKenna, G. B. Macromolecules 2005, 38, 1760. (c) Florey, A. L.; McKenna, G. B. Polymer 2005, 46, 5211. (d) Alcoutlabi, M.; McKenna, G. B. J. Phys. Condens. Matter 2005, 17, R461. (e) Alcoutlabi, M.; Banda, L.; McKenna, G. B. Polymer 2004, 45, 5629.
- (a) Royal, S. J.; Victor, J. G.; Torkelson, J. M. Macromolecules 1992, 25, 729. (b) Hall, D. B.; Dhinojwala, A.; Torkelson, J. M. Phys. Rev. Lett. 1997, 79, 103. (c) Priestley, R. D.; Ellison, C. J.; Broadbelt, L. J.; Torkelson, J. M. Science 2005, 309, 456.
- Pekarski, P.; Hampe, J.; Bohm, I.; Brion, H. G.; Kirchheim, R. Macromolecules 2000, 33, 2192–2199.
- (a) Wang, Z.; Holden, D. A.; McCourt, F. R. W. Macromolecules 1990, 23, 3773. (b) Yoshii, K.; Machida, S.; Horie, K. J. Polym. Sci.: Part B: Polym. Phys. 2000, 38, 3098.
- Vrentas, J. S.; Vrentas, C. M. J. Polym. Sci.: Part B: Polym. Phys. 2003, 41, 501.
- Norman, I.; Porter, G. Proc. R. Soc. Lond. A Math. Phys. Sci. 1955, 230, 399.
- Duda, J. L.; Zielinski, J. M.; In Diffusion in Polymers, P. Neogli, Ed.; Marcel Dekker: New York, 1996; Chapter 3.
- Especially in polar media where dipole–dipole and H-bonding interactions with the solvent may be important, radicals are known to diffuse translationally more slowly than their parent molecules (in which an H-atom has been added to the radical center). These effects are usually small, and we are not aware of studies in bulk polymers which they have been quantified. (a) Terazima, M. Acc. Chem. Res. 2000, 33, 687.
- Steiner, U. E.; Wolff, H. -J. In Photochemistry and Photophysics; J. F. Rabek, Ed.; CRC Press: Boca Raton, 1991; Vol. 4, Chapter 1.
- See for instance: (a) Rice, S. A.; In Diffusion-Limited Reactions. Comprehensive Chemical Kinetics; C. H. Bamford; C. F. H. Tipper; R. G. Compton, Eds.; Elsevier: Amsterdam, 1985; Vol. 25, pp 1–400. (b) Burshtein, A. I. in Unified Theory of Photochemical Charge Separation. Advances in Chemical Physics I. Prigogine; S. A. Rice, Eds.; Wiley: New York, 2000; Vol. 114, pp 419–587.
- The survival probability relates the concentration of the radical pairs, [RP], at a given elapsed time t, [RP]t=t, to the initial concentration of geminate pairs, [RP]t=0 according to P(t) = [RP]t=1/[RP]t=0.
- Shin, K. J.; Kapral, R. J. Chem. Phys. 1978, 69, 3685.
- Collins, F. C.; Kimball, G. E. J. Colloid Sci. 1949, 4, 425.
- Smoluchowski M. V. Z. Phys. Chem. 1917, 92, 129.
- Kelly, D. P.; Serelis, A. K.; Solomon, D. H.; Thompson, P. E. Australian J. Chem. 1987, 40, 1631.
-
Kopeckyp, K.; Pope, P. M.; Lopez-Sastre, J. Can. J. Chem. 1976, 54, 639.
10.1002/cjce.5450540552 Google Scholar
- Engel, P. S. Chem. Rev. 1980, 80, 99.
- Hrovat, D. A.; Liu, J. H.; Turro, N. J.; Weiss, R. G. J. Am. Chem. Soc. 1984, 106, 5291.
- (a) Ruzicka, R.; Barakova, L.; Klan, P. J. Phys. Chem. B 2005, 109, 9346–9353. (b) Veerman, M.; Resendiz, M. J. E.; Garcia-Garibay, M. A. Org. Lett. 2006, 8, 2615. (c) Petrova, S. S.; Kruppa, A. I.; Leshina, T. V. Chem. Phys. Lett. 2004, 385, 40. (d) Aspée, A.; Maretti, L.; Scaiano, J. C. Photochem. Photobiol. Sci. 2003, 2, 1125–1129. (e) Lipson, M.; Noh, T. H.; Doubleday, C. E.; Zaleski, J. M.; Turro, N. J. J. Phys. Chem. 1994, 98, 8844. (f) Roberts, C. B.; Zhang, J.; Brennecke, J. F.; Chateauneuf, J. E. J. Phys. Chem. 1993, 97, 5618.
- (a) Chesta, C. A.; Mohanty, J.; Nau, W. M.; Bhattacharjee, U.; Weiss, R. G. J. Am. Chem. Soc. 2007, 129, 5012. (b) Bhattacharjee, U.; Chesta, C.; Weiss, R. G. Photochem. Photobiol Sci. 2004, 3, 287.
- (a) Scott, T. W.; Liu, S. N. J. Phys. Chem. 1989, 93, 1393. (b) Hirata, Y.; Niga, Y.; Makita, S.; Okada, T. J. Phys. Chem. 1997, 101, 561. (c) Autrey, T.; Devdoss, C.; Sauerwein, B.; Franz, J. A.; Shuster, G. B. J. Phys. Chem. 1995, 99, 869.
- (a) Elles, C. G.; Cox, M. J.; Barnes, G. L.; Crim, F. F. J. Phys. Chem. A 2004, 108, 10973. (b) Lipton, M.; Deniz, A. A.; Peters, K. S. J. Phys. Chem. 1996, 100, 3580. (c) Oelkers, A. B.; Scatena, L. F.; Tyler, D. R. J. Phys. Chem. 2007, 111, 5353.
- (a) Hammond, G. S.; Waits, H. P. J. Am. Chem. Soc. 1964, 86, 1911 and references therein. (b) Kiefer, H.; Traylor, T. J. Am. Chem. Soc. 1967, 89, 6667. (c) Ghibaudi, E.; Colussi, A. J. Chem. Phys. Lett. 1982, 94, 121.
- (a) Glasstone, S.; Laidler, K.; Eyring, H. Theory of Raze Processes; McGraw-Hill: New York, 1941; Chapter 9. (b) Koening, T. J. Am. Chem. Soc. 1969, 91, 2558. (c) Olea, A. F.; Thomas, J. K. J. Am. Chem. Soc. 1988, 110, 4494. (d) Niki, E.; Kamiya, Y. J. Am. Chem. Soc. 1974, 96, 2129.
- Einstein, A. Investigations on the Theory of Brownian Motion; Dover: New York, 1956.
- Levin, P. P.; Ivanov, V. B.; Selikhov, V. V.; Kuźmin, V. A. Ivz. Akad. Nauk. SSSR, Ser. Khim. 1988, 8, 1742.
- Kutsenova, A. V.; Kutyrkin, V. A.; Levin, P. P.; Ivanov, V. B. Kinet. Catal. 1998, 39, 335.
- Kutsenova, A. V.; Levin, P. P.; Ivanov, V. B. Polymer Sci. Ser. B 2002, 44, 124.
- Levin, P. P.; Kutyrkin, V. A.; Kutsenova, A. V. Khim. Fiz. 1989, 8, 1338.
- Spernol, A.; Wirtz, K. Z. Naturforsch, A 1953, 8, 522. f = (0.16 + 0.4rA/rB)(0.9 + 0.4TrB − 0.25TrA). In this equation, rA and rB are the radii of solute and solvent molecules, respectively, and can be estimated from their van der Waals volumes (V; Å 3) assuming the molecules are spherical (r = (3Vχ/4π)1/3, χ = 0.74 is the space filling factor for closest packed spheres, and TrA and TrB are reduced temperatures of solute and solvent, respectively, and can be calculated from the equation, Tr = (T — Tmp)/(Tbp — Tmp), where Tmp and Tbp are melting and boiling points, respectively, of each molecule.
- (a) Kramers, H. A. Physica 1940, 7, 284. (b) Akesson, E.; Hakkarainen, A.; Laitinen, E.; Helenius, V.; Gillbro, T.; Korppi-Tommola, J.; Sundstrom, V. J. Chem. Phys. 1991, 95, 6508. (c) Ben-Amotz, D.; Drake, J. M. J. Chem. Phys. 1988, 89, 1019. (d) Dote, J. L.; Kivelson, D.; Schwartz, R. N. J. Phys. Chem. 1981, 85, 2169. (e) Sun, Y.; Saltiel, J. J. Phys. Chem. 1989, 93, 8310. (f) Terazima, M.; Okamoto, K.; Hirota, N. J. Chem. Phys. 1995, 102, 2506. (g) Kim, S. H.; Kim, S. K. Bull. Korean Chem. Soc. 1996, 17, 365.
- (a) Bagryanskaya, E.; Fedin, M.; Forbes, M. D. E. J. Phys. Chem. A 2005, 109, 5064. (b) McCaffrey, V. P.; Harbron, E. J.; Forbes, M. D. E. J. Phys. Chem. B 2005, 109, 10686.
- Lei, X. G.; Jockusch, S.; Ottaviani, M. F.; Turro, N. J. Photochem. Photobiol. Sci. 2003, 2, 1095.
- Gu, W.; Weiss, R. G. J. Photochem. Photobiol. C 2001, 2, 117.
- Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I. Chem. Rev. 1991, 99, 1991 and references cited therein.
- Jimenez, M. C.; Leal, P.; Miranda, M. A.; Tormos, R. J. Chem. Soc., Chem. Commun. 1995, 2009.
- (a) Miranda, M. A. In CRC Handbook of Organic Photochemistry and Photobiology; W. M. Horspool; P. -S. Song, Eds.; CRC Press: Boca Raton, 1995; Chapter 47. (b) Cui, C.; Wang, X.; Weiss, R. G. J. Org. Chem. 1996, 61, 1962–1974. (c) Miranda, M. A.; Galindo, F. In Photochemistry of Organic Molecules in Isotropic and Anisotropic Media; V. Ramamurthy; K. S. Schanze, Eds.; Marcel Dekker: New York, 2003; Chapter 2.
- Gu, W.; Weiss, R. G. Tetrahedron 2000, 56, 6913.
- Cui, C.; Wang, X.; Weiss, R. G. J. Org. Chem. 1996, 61, 1962.
- From extrapolation of data by: Nakagaki, R.; Hiramatsu, M.; Watanabe, T.; Tanimoto, Y. J. Phys. Chem. 1985, 89, 3222.
- (a) Hammond, G. S. J. Am. Chem. Soc. 1955, 77, 334. (b) Agmon, N. J. Chem. Soc., Faraday Trans. 2 1978, 74, 388. (c) Arteca, G. A.; Mezey, P. G. J. Phys. Chem. 1989, 93, 4746.
- Mori, T.; Takamoto, M.; Saito, H.; Furo, T.; Wada, T.; Inoue, Y. Chem. Lett. 2004, 33, 254.
- (a) Dixon, W. T.; Moghimi, M.; Murphy, D. J. Chem. Soc., Faraday Trans. II 1974, 70, 1713. (b) Dixon, W. T.; Foster, W. E. J.; Murphy, D. J. Chem. Soc., Perkin Trans, II 1973, 15, 2124.
- Gu, W. Ph.D. Thesis, Georgetown University, Washington, DC, 2000.
- (a) Dixon, W. T.; Foster, W. E. J.; Murphy, D. J. Chem. Soc., Perkin Trans. 1972, 2, 2124. (b) Stone, T. J.; Waters, W. A. J. Chem. Soc. 1962, 253.
- (a) Ghibaudi, E.; Colussi, A. Chem. Phys. Lett. 1983, 94, 121. (b) Plank, E. D. A.; Ph.D. Thesis, Purdue University, 1966, as cited in: Sander, M. R.; Hedaya, E.; Trecker, D. J. J. Am. Chem. Soc. 1968, 90, 7249.
- (a) Finnegan, R. A.; Knutson, D. J. Am Chem. Soc. 1967, 89, 1971. (b) Finnegan, R. A.; Knutson, D. Chem. Ind. 1965, 1837.
- (a) Gu, W.; Abdallah, D. J.; Weiss, R. G. J. Photochem. Photobiol. A Chem. 2001, 139, 79. (b) Mori, T.; Inoue, Y.; Weiss, R. G. Org. Lett. 2003, 5, 4661. (c) Mori, T.; Weiss, R. G.; Inoue, Y. J. Am. Chem. Soc. 2004, 126, 8961.
- (a) Tsentalovich, Y. P.; Fischer, H. J. Chem. Soc., Perkin Trans. 1994, 2, 729. (b) Braun, W.; Rajbenbach, L.; Eirich, F. R. J. Phys. Chem. 1962, 66, 1591.
- (a) Turro, N. J.; Gould, I. R.; Baretz, B. H. J. Phys. Chem. 1983, 87, 531. (b) Zhang, X. Y.; Nau, W. M. J. Phys. Org. Chem. 2000, 13, 634.
- (a) Kurnysheva, O. A.; Gritsan, N. P.; Tsentalovich, Y. P. Phys. Chem. Chem. Phys. 2001, 3, 3677. (b) Lunazzi, L.; Ingold, K. U.; Scaiano, J. C. J. Phys. Chem. 1983, 87, 529.
- In this chapter, we define an “alkyl” group as one that is bonded to an ether or ester group via a saturated carbon atom. The total structure may contain unsaturation.
- (a) Waespe, H. R.; Hansen, H. J.; Paul, H.; Fischer, H. Helv. Chim. Acta 1978, 61, 401. (b) Adam, W.; Fischer, H.; Hansen, H. J.; Heimgartner, H.; Schmid, H.; Waespe, H. R. Angew. Chem., Int. Ed. Engl. 1973, 12, 662.
- (a) Pohlers, G.; Grimme, S.; Dreeskamp, H. J. Photochem. Photobiol. A Chem. 1994, 79, 153. (b) Grimme, S.; Dreeskamp, H. J. Photochem. Photobiol. A Chem. 1992, 65, 371.
- Shimamura, N.; Sugimori, A. Bull. Chem. Soc. Jpn. 1971, 44, 281.
- Gu, W.; Warrier, M.; Schoon, B.; Ramamurthy, V.; Weiss, R. G. Langmuir 2000, 16, 6977.
- Pichumani, K.; Warrier, M.; Weiss, R. G.; Ramamurthy, V. Tetrahedron Lett. 1996, 37, 6251.
- Tung, C. -H.; Xu, X. -H. Tetrahedron Lett. 1999, 40, 127.
- (a) Wang, C.; Xu, J.; Weiss, R. G. J. Phys. Chem. B 2003, 107, 7015. (b) Gu, W.; Hill, A. J.; Wang, X. C.; Cui, C. X.; Weiss, R. G. Macromolecules 2000, 33, 7801. (c) Luo, C.; Atvars, T. D. Z.; Meakin, P.; Hill, A. J.; Weiss, R. G. J. Am. Chem. Soc. 2003, 125, 11879.
- Cui, C.; Weiss, R. G. J. Am. Chem. Soc. 1993, 115, 9820.
- Luo, C.; Passin, P.; Weiss, R. G. Photochem. Photobiol. 2006, 82, 163.
- Gu, W.; Bi, S.; Weiss, R. G. Photochem. Photobiol. Sci. 2002, 1, 52.
- Nagahara, K.; Ryu, I.; Kambe, N.; Komatsu, M.; Sonoda, N. J. Org. Chem. 1995, 60, 7384.
- Birks, J. B. In Organic Molecular Photophysics; J. B. Birks, Ed.; Wiley: New York, 1973; Vol. 1, p 403.
- Michaels, A. S.; Bixler, H. J. J. Polym. Sci. 1961, 50, 413.
- Given the greater stability of a benzylic radical than an acyl radical, the rates of combination of benzylic/aryloxy pairs should be slower than those of phenylacyl/aryloxy pairs.
- Xu, J.; George, M.; Weiss, R. G. Ann. Brazil. Acad. Sci. 2006, 78, 31.
- Xu, J.; Weiss, R. G. Photochem. Photobiol. Sci. 2005, 4, 348.
- (a) Phillips, P. J. Chem. Rev. 1990, 90, 425. (b) Jang, Y. T.; Phillips, P. J.; Thulstrup, E. W. Chem. Phys. Lett. 1982, 93, 66. (c) Meirovitch, E. J. Phys. Chem. 1984, 88, 2629. (d) Naciri, J.; Weiss, R. G. Macromolecules 1989, 22, 3928. (e) He, Z.; Hammond, G. S.; Weiss, R. G. Macromolecules 1992, 25, 1568. (f) Jenkins, R. M.; Hammond, G. S.; Weiss, R. G. J. Phys. Chem. 1992, 96, 496.
- Gu, W.; Weiss, R. G. J. Org. Chem. 2001, 66, 1775.
- Attempts to investigate this hypothesis further were foiled when it was found that irradiation of 5,6,7,8-tetrahydro-1-naphthyl phenylacetate, an ester that yields an aryloxy fragment similar in size and shape to 1-naphthoxy but whose electronic properties are more similar to those of phenoxy, did not result in detectable amounts of photoproducts analogous to 4-AN or 4-BN, apparently because of steric factors near the 4-position of the aryloxy group.75
- For reviews on the stereoselectivity of radical pair combinations, see (a) Curran, D. P.; Porter, N. A.; Giese, B. Stereochemistry of Radical Reactions: Concepts, Guidelines, and Synthetic Applications; VCH: Weinheim, 1995; p 242, and references cited therein. (b) John, L. E. An Introduction to Free Radicals; Wiley: New York, 1993; p 56 and references cited therein.
- Xu, J.; Weiss, R. G. Photochem. Photobiol. Sci. 2005, 4, 210.
- Xu, J.; Weiss, R. G. Org. Lett. 2003, 5, 3077.
- In the most constraining cages of solid n-nonadecane or stretched LDPE and HDPE, the ee of 2-AN is somewhat lower because of a secondary photoprocess, analogous to the first step in the Norrish-Yang reaction,2 that its keto precursor (Equation 13.5) under goes. (a) Mori, T.; Takamoto, M.; Saito, H.; Furo, T.; Wada, T.; Inoue, Y. Chem. Lett. 2004, 33, 256. (b) Jiménez, M. C.; Miranda, M. A.; Scaiano, J. C.; Tormos, R. Chem. Commun. 1997, 1487.
- Xu, J.; Weiss, R. G. J. Org. Chem. 2005, 70, 1243.
- Kiefer, H.; Traylor, T. G. J. Am. Chem. Soc. 1967, 89, 6667.
- The distance between the radical center in 1-phenylethyl and the oxygen atom of 1-naphthoxy immediately after lysis of (R)-3b is assumed to be the sum of their van der Waals radii, 3.22 Å . Then, the minimum distance traveled by the reactive radical center of 1-phenylethyl to reach the 4-position of 1-naphthoxy (without consideration of the orientation of approach) is estimated to be 5.1 Å based on a length for the newly formed C-C bond of 1.5Å. (a) Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. J. Chem. Soc., Perkin Trans. 2 1987, S1.
- The distance between the radical center of 1-phenylethyl needed to form a bond at the 2-position of 1-naphthoxy immediately after lysis of 3b is estimated to be ˜3Å.77
- Alwattar, A. H.; Lumb, M. D.; Birks, J. B. In Organic Molecular Photophysics; J. B. Birks, Ed.; Wiley: New York, 1973; Vol. 1, pp 403–456.
- (a) Tarasov, V. F.; Shkrob, I. A.; Step, E. N.; Buchachenko, A. L. Chem. Phys. 1989, 135, 391. (b) Tarasov, V. F.; Ghatlia, N. D.; Buchachenko, A.; Turro, N. J. J. Phys. Chem. 1991, 95, 10220.
- Conradi, M. S.; Zeldes, H.; Livingston, R. J. Phys. Chem. 1979, 83, 2160.
- In addition to not addressing the need for individual tumbling rate constants for radical pair combinations leading to 3b, 2-BN, and 4-BN, Scheme 13.5 does not take into account the fact the values of kt probably differ and the translational rate constants definitely differ83 within amorphous and interfacial cages of either LDPE or HDPE.
- (a) Schurr, O. Ph.D Thesis, Georgetown University, Washington, DC, 2002. (b) Schurr, O.; Weiss, R. G. Polymer 2004, 45, 5713. (c) Taraszka, J. A.; Weiss, R. G. Macromolecules 1997, 30, 2467.
- Few examples of direct comparisons of rates of reaction of different radicals with a common species are in the literature. In one, the (nondelocalized) tert-butyl radical was found to react more rapidly than pivaloyl radical with an electron-deficient partner, acrylonitrile, in 2-propanol.a This is not a good analogy to the comparison between 1-phenylethyl and 2-phenylpropanoyl being made here because we suspect that 1-naphthoxy is more electron-rich than acrylonitrile, polyethylene is much less polar than 2-propanol, and the odd-electron in a 1-phenylethyl radical is delocalized. (a) Jent, F.; Paul, H.; Roduner, E.; Heming, M.; Fischer, H. Int. J. Chem. Kinet. 1986, 18, 1113.
- See for instance: (a) Pitts, J. N.; Lentsinger, R. L.; Taylor, R. P.; Patterson, J. M.; Recktenwald, G.; Martin, R. B. J. Am. Chem. Soc. 1959, 81, 1068. (b) Weiner, S. A. J. Am. Chem. Soc. 1971, 93, 425. (c) Filipescu, N.; Minn, F. L. J. Am. Chem. Soc. 1968, 90, 1544. (d) Viltres Costa, C.; Grela, M. A.; Churio, M. S. J. Photochem. Photobiol. A: Chem. 1996, 99, 51 and references therein.
- Emanuel', N. M.; Buchachenko, A. L. In Chemical Physics of Molecular Degradation and Stabilization of Polymers; Nauka: Moscow, 1988.
- (a) Robbins, W. K.; Eastman, R. H. J. Am. Chem. Soc 1970, 92, 6076–6077. (b) Robbins, W. K.; Eastman, R. H. J. Am. Chem. Soc 1970, 92, 6077.
- Engel, P. S. J. Am. Chem. Soc. 1970, 92, 6074.
- The magnitudes of the calculated second-order rate constants (kr2) were unreasonably large ((1–5) × 109 M−1s−1) given the known rates of self-diffusion of molecules of similar size and shape in polyethylene films.
- (a) Tsentalovich, Y. P.; Kurnysheva, O. A.; Gritsan, N. P. Russ. Chem. Bull. Intern. Ed. 2001, 50, 237. (b) Zhang, X.; Nau, W. M. J. Phys. Org. Chem. 2000, 13, 634. (c) Claridge, R. F. C.; Fischer, H. J. Phys. Chem. 1983, 87, 1960. (d) Tokumura, K.; Ozaki, T.; Nosaka, H.; Saigusa, Y.; Itoh, M. J. Am. Chem. Soc. 1991, 113, 4974. (e) Maouf, A.; Lemmetyinen, H.; Koskikallio, J. Acta Chem. Scand. 1990, 44, 36. (f) Turro, N. J.; Gould, I. R.; Baretz, B. H. J. Phys. Chem. 1983, 87, 531.
- Crank, J. The Mathematics of Diffusion; 2nd ed., Oxford Press: Oxford, UK, 1975.
- (a) P. Neogi, Ed.; Diffusion in Polymers; Marcel Dekker: New York, 1996. (b) Vieth, W. R. Diffusion in and Through Polymers; Hanser: Munich, 1991.
- (a) Bachmann, W. E.; Wiselogle, F. Y. J. Org. Chem. 1936, 1, 354. (b) Perkins, M. J. J. Chem. Soc. 1964, 5932. (c) Fischer, H. Chem. Rev. 2001, 101, 3581–3610. (d) Studer, A. Chem. Eur. J. 2001, 7, 1159.
- Bohne, C.; Alnajjar, S.; Griller, D.; Scaiano, J. C. J. Am. Chem. Soc. 1991, 113, 1444.
- Tarasov, V. F.; Ghatlia, N. D.; Buchachenko, A. L.; Turro, N. J. J. Am. Chem. Soc. 1992, 114, 9517.