Phytoalexins as Part of Induced Defence Reactions in Plants: Their Elicitation, Function and Metabolism
W. Barz
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorW. Bless
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorG. Börger-Papendorf
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorW. Gunia
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorU. Mackenbrock
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorD. Meier
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorCh. Otto
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorE. Süper
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorW. Barz
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorW. Bless
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorG. Börger-Papendorf
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorW. Gunia
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorU. Mackenbrock
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorD. Meier
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorCh. Otto
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorE. Süper
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorJoan Marsh
Search for more papers by this authorSummary
Microbial infection of plants or elicitation of cell cultures initiates substantial metabolic changes directed at the induction of defence reactions. The antimicrobial phytoalexins deserve special attention because they represent one essential component of plant resistance. The great structural diversity of phytoalexins and possible cellular sites for their toxic activity are discussed. Pterocarpan phytoalexin biosynthesis in Cicer arietinum is an example of the induction of extended biosynthetic pathways, their modes of regulation and metabolic links with constitutive secondary product formation. Elicitation of plant tissues represents a technique to induce simultaneously the formation of phytoalexins and increased levels of constitutive or other secondary products that do not normally accumulate. The biological function of phytoalexins and the pathways of their degradation by pathogenic fungi are outlined. Detoxification of phytoalexins by fungi may have important consequences for the practical application of these defence compounds and for the genetic transformation of fungi and plants. Phytoalexins accumulate in plants or cell cultures only transiently, because they are readily degraded or polymerized by extracellular peroxidases.
References
- JA Bailey, JW Mansfield (eds) 1982 Phytoalexins. Halsted Press, New York
- Barz W, Daniel S, Hinderer W et al 1988 Elicitation and metabolism of phytoalexins in plant cell cultures. In: Applications of plant cell and tissue culture. Wiley, Chichester (Ciba Found Symp 137) p 178–198
-
Barz W,
Bless W,
Daniel S et al
1989
Elicitation and suppression of isoflavones and pterocarpan phytoalexins in chickpea (Cicer arietinum L) cell cultures. In:
WGW Kurz (ed)
Primary and secondary metabolism of plant cell cultures II.
Springer-Verlag, Heidelberg,
p 208–218
10.1007/978-3-642-74551-5_23 Google Scholar
- Barz W, Beimen A, Dräger B et al 1990 Turnover and storage of secondary products in cell cultures. Annu Proc Phytochem Soc Eur, in press
- Bokel M, Diyasena MN, Gunatilaka AAL, Kraus W, Sotheeswaran S 1988 Canaliculatol, an antifungal resveratrol trimer from Stemonoporous [sic] canaliculatus. Phytochemistry (Oxf) 27: 377–380
- Croteau R, Gurkewitz S, Johnson MA, Fisk HJ 1987 Biochemistry of oleoresinosis. Plant Physiol (Bethesda) 85: 1123–1128
- Darvill AG, Albersheim P 1984 Phytoalexins and their elicitors. A defence against microbial infection in plants. Annu Rev Plant Physiol 35: 243–276
- Desjardins AE, Gardner HW, Planner RD 1989a Detoxification of the potato phytoalexin lubimin by Gibberella pulicaris. Phytochemistry (Oxf) 28: 431–437
- Desjardins AE, Spencer GF, Plattner RD 1989b Tolerance and metabolism of furano-coumarins by the phytopathogenic fungus Gibberella pulicaris (Fusarium sambucinum). Phytochemistry (Oxf) 28: 2963–2969
- Dixon RA 1986 The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61: 239–291
- Ebel J 1986 Phytoalexin synthesis: the biochemical analysis of the induction process. Annu Rev Phytopathol 24: 235–264
-
Ebel J,
Cosio EG,
Grab H,
Habereder H
1989
Stimulation of phytoalexin accumulation in fungus-infected roots and elicitor-treated cell cultures of soybean (Glycine max L). In:
WGW Kurz (ed)
Primary and secondary metabolism of plant cell cultures II.
Springer-Verlag, Heidelberg,
p 229–238
10.1007/978-3-642-74551-5_25 Google Scholar
- Eilert U 1987 Elicitation: methodology and aspects of application. In: F Constabel, JK Vasil (eds) Cell culture and somatic genetics of plants. Academic Press, San Diego New York vol 4: 153–196
- Giannini JL, Briskin DP, Holts JS, Paxton JD 1988 Inhibition of plasma membrane and tonoplast proton-transporting ATPase by glyceollin. Phytopathology 78: 1000–1003
- Hahlbrock K, Scheel D 1989 Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369
- Hahn MG, Bonhoff A, Grisebach H 1985 Quantitative localization of the phytoalexin glyceollin I in relation to fungal hyphae in soybean roots infected with Phytophthora megasperma f. sp. glycinea. Plant Physiol (Bethesda) 77: 591–601
- Harborne JB 1988 Introduction to ecological biochemistry, 3rd edn. Academic Press, London
- Haslam E 1988 Secondary metabolism–fact and fiction. Nat Prod Rep 3: 217–250
- Höhl B, Arnemann M, Schwenen L et al 1989 Degradation of the pterocarpan phytoalexin (–)-maackiain by Ascochyta rabiei. Z Naturforsch Sect C Biosci 44: 771–776
- Ikemeyer D, Barz W 1989 Comparison of secondary product accumulation in phyto-autotrophic, photomixotrophic and heterotrophic Nicotiana tabacum cell suspension cultures. Plant Cell Rep 8: 479–482
- Laks PE, Pruner MS 1989 Flavonoid biocides: structure/activity relations of flavonoid phytoalexin analogues. Phytochemistry (Oxf) 28: 87–91
- Lamb CJ, Lawton MA, Dron M, Dixon RA 1989 Signals and transduction mechanisms for activation of plant defences against microbial attack. Cell 56: 215–224
- Leong SA, Holden DW 1989 Molecular genetic approaches to the study of fungal pathogenesis. Annu Rev Phytopathol 27: 463–481
- Mitscher LA, Gollapudi SR, Gerlach DC et al 1988 Erycristin, a new antimicrobial pterocarpan from Erythrina crista-galli. Phytochemistry (Oxf) 27: 381–385
- Moesta P, Grisebach H 1982 L-AOPP inhibits phytoalexin accumulation in soybean with concomitant loss of resistance against Phytophthora megasperma f .sp. glycinea. Physiol Plant Pathol 25: 65–70
- Schäfer W, Straney D, Ciuffetti L, VanEtten HD, Yoder OC 1989 One enzyme makes a fungal pathogen, but not a saprophyte, virulent on a new host plant. Science (Wash DC) 246: 247–249
- Smith DA, Harrer JM, Cleveland TE 1981 Simultaneous detoxification of phytoalexins by Fusarium solani f.sp. phaseoli. Phytopathology 71: 1212–1215
- Threlfall DR, Whitehead JM 1988 Co-ordinated inhibition of squalene synthetase and induction of enzymes of sesquiterpenoid phytoalexin biosynthesis in cultures of Nicotiana tabacum. Phytochemistry (Oxf) 8: 2567–2580
- VanEtten HD, Matthews DE, Matthews PS 1989 Phytoalexin detoxification: importance for pathogenicity and practical implications. Annu Rev Phytopathol 27: 143–164
- Vogelsang R, Barz W 1990 Elicitation of b̃-1,3-glucanase and chitinase activities in cell suspension cultures of Ascochyta rabiei resistant and susceptible cultivars of chickpea (Cicer arietinum). Z Naturforsch Sect C Biosci 45: 233–239
- Wink M 1988 Plant breeding: importance of plant secondary metabolites for protection against pathogenes and herbivores. Theor Appl Genet 75: 225–233
- Daniel S, Hinderer W, Barz W 1988 Elicitor-induced changes of enzyme activities related to isoflavone and pterocarpan accumulation in chickpea (Cicer arietinum L) cell suspension cultures. Z Naturforsch Sect C Biosci 43: 536–544
- Schroder J, Schröder G 1990 Stilbene and chalcone synthases: related enzymes with key functions in plant-specific pathways. Z Naturforsch Sect C Biosci 45: 1–8