Elicitation and Metabolism of Phytoalexins in Plant Cell Cultures
Professor Dr W. Barz
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorS. Daniel
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorW. Hinderer
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorU. Jaques
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorH. Kessmann
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorJ. Köster
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorC. Otto
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorK. Tiemann
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorProfessor Dr W. Barz
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorS. Daniel
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorW. Hinderer
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorU. Jaques
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorH. Kessmann
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorJ. Köster
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorC. Otto
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorK. Tiemann
Lehrstuhl für Biochemie der Pflanzen, Westfälische Wilhelms-Universität, Hindenburgplatz 55, D-4400 Münster, Federal Republic of Germany
Search for more papers by this authorJoan Marsh
Search for more papers by this authorSummary
Application of biotic or abiotic elicitors to plant cells induces substantial metabolic alterations directed at establishing plant defence reactions. The elicitor-induced accumulation of antimicrobial phytoalexins deserves special attention for explaining plant-fungal parasite interaction. The great chemical diversity of phytoalexins is reviewed. In chickpea (Cicer arietinum L.), the 6aR:11aR-pterocarpan phytoalexins, medicarpin and maackiain, are induced by both endogenous and Ascochyta rabiei-derived elicitors. An A. rabiei suppressor inhibits in C. arietinum the accumulation of pre-infectional isoflavones, their glucoside conjugates and the phytoalexins. Chickpea cell cultures established from cultivars with high resistance (ILC 3279) and high susceptibility (ILC 1929) to the pathogen A . rabiei show identical patterns of isoflavone accumulation but differ significantly in phytoalexin production. The high phytoalexin producing culture ILC 3279 has been used to characterize new isoflavone hydroxylases and an isoflavone oxidoreductase which are specifically involved in pterocarpan formation. The elicitor-induced changes in enzyme activities measured in cell culture ILC 3279 can be depicted by a metabolic grid of three sets of closely linked enzymes for the general phenylpropanoid pathway, the isoflavone conjugation reactions and the biosynthesis of pterocarpans. After excretion into the growth medium, the pterocarpans are polymerized by peroxidases.
References
- Bailey JA, Mansfield JA 1982 Phytoalexins. Blackie, Glasgow & London
- Barz W, Daniel S, Hinderer W et al 1987 Elicitation and metabolism of phytoalexins in plant cell cultures. In: MS Pais (ed) Plant cell biotechnology. Springer-Verlag, Berlin, Heidelberg, in press
- Darvill AG, Albersheim P 1984 Phytoalexins and their elicitors. A defence against microbial infection in plants. Annu Rev Plant Physiol 35: 243–276
-
de Wit PJGM
1986
Elicitation of active resistance mechanisms.
In: JA Bailey (ed)
Biology and molecular biology of plant-pathogen interactions.
Springer-Verlag, Berlin, Heidelberg, New York,
p 149–169
10.1007/978-3-642-82849-2_12 Google Scholar
- DiCosmo F, Misawa M 1985 Eliciting secondary metabolism in plant cell cultures. Trends Biotechnol 3: 318–322
- Dixon RA 1980 Plant tissue culture methods in the study of phytoalexin induction. In: DS Ingram, JP Helgeson (eds) Tissue culture methods for plant pathologists. Blackwell, Oxford, p 185–196
- Dixon RA 1986 The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61: 239–291
- Ebel J 1986 Phytoalexin synthesis: the biochemical analysis of the induction process. Annu Rev Phytopathol 24: 235–264
- Hinderer W, Köster J, Barz W 1986 Purification and properties of a specific isoflavone 7–0-glucoside-6”-malonate malonylesterase from roots of chickpea (Cicer arietinum L.). Arch Biochem Biophys 248: 570–578
- Hinderer W, Flentje U, Barz W 1987 Microsomal isoflavone 2′-and 3′-hydroxylases from chickpea (Cicer arietinum L.) cell suspension cultures induced for pterocarpan phytoalexin formation. FEBS (Fed Eur Biochem Soc) Lett 214: 101–106
- Höhl B, Barz W 1987 Partial characterization of an enzyme from the fungus Ascochyta rabiei for the reductive cleavage of pterocarpan phytoalexins to 2′-hydroxy-isoflavans. Z Naturforsch Sect C Biosci 42: 897–901
- Jaques U, Kessmann H, Barz W 1987 Accumulation of phenolic compounds and phytoalexins in sliced and elicitor-treated cotyledons of Cicer arietinum L. Z Naturforsch Sect C Biosci 42: 1171–1178
- Kauss H 1987 Some aspects of calcium-dependent regulation in plant metabolism. Annu Rev Plant Physiol 38: 47–72
- Kessmann H, Barz W 1986 Elicitation and suppression of phytoalexins and isoflavone accumulation in cotyledons of Cicer arietinum L. as caused by wounding and by polymeric components from the fungus Ascochyta rabiei. J Phytopathol 117: 321–335
- Kessmann H, Barz W 1987 Accumulation of isoflavones and pterocarpan phytoalexins in cell suspension cultures of different cultivars of chickpea (Cicer arietinum). Plant Cell Rep 6: 55–59
- Kessmann H, Tiemann K, Jansen JR, Reuscher H, Bringmann G, Barz W 1987 In vivo characterization of NADPH: 2′-hydroxyisoflavone oxidoreductase in elicitor treated chickpea cell cultures and stereochemical aspects of the phytoalexins medicarpin and maackiain. In: MS Pais (ed) Plant cell biotechnology. Springer-Verlag, Berlin, Heidelberg, in press.
-
Kombrink E,
Bollmann J,
Hauffe KD et al
1986
Biochemical responses of non-host plant cells to fungi and fungal elicitors.
In: JA Bailey (ed)
Biology and molecular biology of plant-pathogen interactions.
Springer-Verlag, Berlin, Heidelberg, New York,
p 253–262
10.1007/978-3-642-82849-2_23 Google Scholar
- Kurosaki F, Tsurusawa Y, Nishi A 1987 The elicitation of phytoalexins by Ca2+ and cyclic AMP in carrot cells. Phytochemistry (Oxf) 26: 1919–1923
- Pandey BK, Singh US, Chaube HS 1987 Mode of infection of Ascochyta blight of chickpea caused by Ascochyta rabiei. J Phytopathol 119: 88–93
-
Ryder TB,
Bell JN,
Cramer CL et al
1986
Organization, structure and activation of plant defence genes.
In: JA Bailey (ed)
Biology and molecular biology of plant-pathogen interactions.
Springer-Verlag, Berlin, Heidelberg, New York,
p 207–219
10.1007/978-3-642-82849-2_19 Google Scholar
- Saxena MC, Singh KB 1984 Ascochyta blight and winter sowing of chickpea. Kluwer, The Hague, The Netherlands & Boston & Lancaster
- Tiemann K, Hinderer W, Barz W 1987 Isolation of NADPH:isoflavone oxidoreductase, a new enzyme of pterocarpan phytoalexin biosynthesis in cell suspension cultures of Cicer arietinum. FEBS (Fed Eur Biochem Soc) Lett 213: 324–328
- VanEtten HD, Kistler HC 1984 Microbial enzyme regulation and its importance for pathogenicity. In: T Kosugue, EW Nester (eds) Plant-microbe interactions. Molecular and genetic perspectives. Macmillan, New York, vol 1: 42–68
-
Ward EWB
1986
Biochemical mechanisms involved in resistance of plants to fungi.
In: JA Bailey (ed)
Biology and molecular biology of plant-pathogen interactions.
Springer-Verlag, Berlin, Heidelberg, New York,
p 107–131
10.1007/978-3-642-82849-2_9 Google Scholar
- Weigand F, Köster J, Weltzien HC, Barz W 1986 Accumulation of phytoalexins and isoflavone glucosides in a resistant and a susceptible cultivar of Cicer arietinum during infection with Ascochyta rabiei. J. Phytopathol 115: 214–221
-
Wood RKS
1986
Introductory comments on host-parasite interaction.
In JA Bailey (ed)
Biology and molecular biology of plant-pathogen interactions.
Springer-Verlag, Berlin, Heidelberg, New York,
p 1–13
10.1007/978-3-642-82849-2_1 Google Scholar
- Furuya T, Ikuta A 1968 The presence of l–maackiain and pterocarpin in callus tissue of Sophora angustifolia. Chem Pharm Bull 16: 771
- Honda G, Tabata M 1982 Antidermatophytic substances from Sophora angustifolia. Planta Med 1982: 122–123
- Lang H, Kohlenbach HW 1982 Differentiation of alkaloid cells in cultures of macleaya mesophyll protoplasts. Planta Med 46: 78–81
- Schumacher HM, Gundlach H, Fiedler F, Zenk MH 1987 Elicitation of benzophenan-thridine alkaloid synthesis in Eschscholtzia cell cultures. Plant Cell Rep 6: 410–413