Function and Pharmacology of Circadian Clocks
Gabriella B. Lundkvist
Karolinska Institutet, Stockholm, Sweden
Search for more papers by this authorGene D. Block
University of Virginia, Charlottesville, Virginia
Search for more papers by this authorGabriella B. Lundkvist
Karolinska Institutet, Stockholm, Sweden
Search for more papers by this authorGene D. Block
University of Virginia, Charlottesville, Virginia
Search for more papers by this authorAbstract
Biological timing systems are complex structures in higher organisms, generating biological and physiological functions with a periodicity of approximately 24 h. Knowledge of the structure and function of biological clocks has emerged from research on both invertebrate and vertebrate models. In humans, the master clock is located in the hypothalamus in the brain. Daily rhythms such as the sleep–wake cycle and hormonal rhythms can be modulated and disturbed by a number of pharmacological compounds. Drug therapy can be administered in a circadian fashion (chronopharmacology), thus taking into account the powerful circadian impact on drug toxicity and efficacy. This review will describe circadian systems and pharmacological impact on the timing structures.
References
- 1 Pittendrigh, C. S. (1988). The photoperiodic phenomena: Seasonal modulation of the “day within.” J. Biol. Rhythms 3(2), 173–188.
- 2 Moore-Ede, M. C., Sulzman, F. M., and Fuller, C. A. (1982). The Clocks that Time Us. Harvard University Press, Cambridge, MA.
- 3 Frisch, K. V. (1967). The Dance Language and Orientation of Bees. Harvard University Press, The Belknap Press, Cambridge, MA.
- 4
Hoffman, K.
(1971).
Experimental manipulation of the orientational clock in birds.
Cold Spring Harbor Symp. Quant. Biol.
25,
379–387.
10.1101/SQB.1960.025.01.040 Google Scholar
- 5 Saunders, D. S. (1977). An Introduction to Biological Rhythms. Blackie & Sons, London.
- 6
Wever, R.
(1979).
The Circadian System of Man: Results from Experiments Under Temporal Isolation.
Springer-Verlag, New York.
10.1007/978-1-4612-6142-1 Google Scholar
- 7 Dunlap, J. C., Loros, J. J., and DeCoursey, P. J. (2003). Chronobiology: Biological Timekeeping. Sinauer Associates, Sunderland, MA.
- 8 Pittendrigh, C. S. (1954). On temperature independence in the clock-system controlling emergence in Drosophila. Proc. Natl. Acad. Sci. USA 40, 1018–1029.
- 9 Pittendrigh, C. S. (1960). On temporal organization in living systems. Harvey Lect. 56, 93–125.
- 10 Pittendrigh, C. S., and Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents IV. Entrainment: Pacemaker as clock. J. Comp. Physiol. 106, 291–331.
- 11 Aschoff, J., and Pohl, H. (1978). Phase relations between a circadian rhythm and its zeitgeber within the range of entrainment. Naturwissenschaften 65(2), 80–84.
- 12 Pittendrigh, C. S. (1974). Circadian oscillations in cells and the circadian organization of multicellular systems. In The Neurosciences, F. O. Schmitt and W. F. G. , Ed. The MIT Press, Cambridge, MA, pp. 437–458.
- 13 Daan, S. (2000). The Colin S. Pittendrigh Lecture. Colin Pittendrigh, Jurgen Aschoff, and the natural entrainment of circadian systems. J. Biol. Rhythms 15(3), 195–207.
- 14 Aschoff, J. (1979). Influences of internal and external factors on the period measured in constant conditions. Z. Tierpyschol. 49, 225–249.
- 15 Daan, S., et al. (2001). Assembling a clock for all seasons: Are there M and E oscillators in the genes? J. Biol. Rhythms 16(2), 105–116.
- 16 Pittendrigh, C. S., and Daan, S. (1976). A functional analysis of circadian pacemakers in nocturnal rodents. I. The stability and lability of sponeous frequency. J. Comp. Physiol. 106, 223–252.
- 17 Konopka, R., and Benzer, S. (1971). Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112–2116.
- 18 Hall, J. C. (2003). Genetics and molecular biology of rhythms in Drosophila and other insects. Adv. Genet. 48, 1–280.
- 19 Young, M. W., and Kay, S. A. (2001). Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2(9), 702–715.
- 20 Moore, M. S., et al. (1998). Ethanol intoxication in Drosophila: Genetic and pharmacological evidence for regulation by the cAMP signaling pathway. Cell 93(6), 997–1007.
- 21 Bainton, R. J., et al. (2000). Dopamine modulates acute responses to cocaine, nicotine and ethanol in Drosophila. Curr. Biol. 10(4), 187–194.
- 22 Wolf, F. W., and Heberlein, U. (2003). Invertebrate models of drug abuse. J. Neurobiol. 54(1), 161–178.
- 23 Wolf, F. W., et al. (2002). High-resolution analysis of ethanol-induced locomotor stimulation in Drosophila. J. Neurosci. 22(24), 11035–11044.
- 24 McClung, C., and Hirsh, J. (1998). Stereotypic behavioral responses to free-base cocaine and the development of behavioral sensitization in Drosophila melanogaster. Curr. Biol. 8, 109–112.
- 25 Scholz, H., et al. (2000). Functional ethanol tolerance in Drosophila. Neuron 28(1), 261–271.
- 26 Berger, K. H., Heberlein, U., and Moore, M. S. (2004). Rapid and chronic: Two distinct forms of ethanol tolerance in Drosophila. Alcohol Clin. Exp. Res. 28(10), 1469–1480.
- 27 Robinson, T. E., and Berridge, K. C. (2000). The psychology and neurobiology of addiction: An incentive-sensitization view. Addiction 95(Suppl. 2), S91–S117.
- 28 Robinson, T. E., and Berridge, K. C. (2003). Addiction. Annu. Rev. Psychol. 54(1), 25–53.
- 29 Li, H., et al. (2000). Ectopic G-protein expression in dopamine and serotonin neurons blocks cocaine sensitization in Drosophila melanogaster. Curr. Biol. 10, 211–214.
- 30 Park, S., et al. (2000). PKAII-deficient Drosophila are viable but show developmental, circadian and drug response phenotypes. J. Biol. Chem. 275, 20588–20596.
- 31 Rodan, A. R., Kiger, J. A., Jr., and Heberlein, U. (2002). Functional dissection of neuroanatomical loci regulating ethanol sensitivity in Drosophila. J. Neurosci. 22(21), 9490–9501.
- 32 Nestler, E. J. (2004). Historical review: Molecular and cellular mechanisms of opiate and cocaine addiction. Trends Pharmacol. Sci. 25(4), 210–218.
- 33 Andretic, R., and Hirsh, J. (2000). Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97(4), 1873–1878.
- 34 Andretic, R., Chaney, S., and Hirsh, J. (1999). Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285(5430), 1066–1068.
- 35 Andretic, R., Chaney, S., and Hirsh, J. (1999). Circadian genes are required for cocaine sensitization in Drosophila. Science 285, 1066–1068.
- 36 Abarca, C., Albrecht, U., and Spanagel, R. (2002). Cocaine sensitization and reward are under the influence of circadian genes and rhythm. Proc. Natl. Acad. Sci. USA 99(13), 9026–9030.
- 37 Zheng, B., et al. (2001). Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell 105(5), 683–694.
- 38 Zheng, B., et al. (1999). The mPer2 gene encodes a functional component of the mammalian circadian clock. Nature 400(6740), 169–173.
- 39 Bae, K., et al. (2001). Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron 30(2), 525–536.
- 40 McClung, C. A., et al. (2005). Regulation of dopaminergic transmission and cocaine reward by the Clock gene. Proc. Natl. Acad. Sci. USA 102, 9377–9381.
- 41 Block, G. D., and Wallace, S. F. (1982). Localization of a circadian pacemaker in the eye of a mollusc, Bulla. Science 217, 155–157.
- 42 Jacklet, J. W. (1969). Circadian rhythm of optic nerve impulses recorded in darkness from isolated eye of Aplysia. Science 164(879), 562–563.
- 43 Blumenthal, E. M., Block, G. D., and Eskin, A. (2001). Cellular and molecular analysis of molluscan circadian pacemakers In Handbook of Behavioral Neurobiololgy: Circadian Clocks, J. S. Takahashi, F. W. Turek, and R. Y. Moore, Eds. Plenum, New York.
- 44 Block, G. D., and McMahon, D. G. (1984). Cellular analysis of the Bulla ocular circadian pacemaker system III. Localization of the circadian pacemaker. J. Comp. Physiol. A 155, 387–395.
- 45 Ralph, M. R., and Block, G. D. (1990). Circadian and light-induced conductance changes in putative pacemaker cells of Bulla gouldiana. J. Comp. Physiol. A 166(5), 589–595.
- 46 Michel, S., et al. (1993). Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259(5092), 239–241.
- 47 Jacklet, J. W., and Barnes, S. (1993). Photoresponsive pacemaker neurons from the dissociated retina of Aplysia. Neuroreport 5(3), 209–212.
- 48 McMahon, D. G., and Block, G. D. (1987). The Bulla ocular circadian pacemaker. I. Pacemaker neuron membrane potential controls phase through a calcium-dependent mechanism. J. Comp. Physiol. A 161(3), 335–346.
- 49 Colwell, C. S., Khalsa, S. B., and Block, G. D. (1992). FMRFamide modulates the action of phase shifting agents on the ocular circadian pacemakers of Aplysia and Bulla. J. Comp. Physiol. A 170(2), 211–215.
- 50 Corrent, G., Eskin, A., and Kay, I. (1982). Entrainment of the circadian rhythm from the eye of Aplysia: Role of serotonin. Am. J. Physiol. 242(3), R326–R332.
- 51 Eskin, A., and Maresh, R. D. (1982). Serotonin or electrical optic nerve stimulation increases the photosensitivity of the Aplysia eye. Comp. Biochem. Physiol. C: Comp. Pharmacol. Toxicol. 73C, 27–31.
- 52 Colwell, C. S. (1990). Light and serotonin interact in affecting the circadian system of Aplysia. J. Comp. Physiol. A 167(6), 841–845.
- 53 McMahon, D. G., Block, G., and Wallace, S. F. (1984). Cellular analysis of the Bulla ocular circadian pacemaker system: II. Neurophysiological basis of circadian rhythmnicity. J. Comp. Physiol. 155, 379–385.
- 54 Michel, S., et al. (1999). A delayed rectifier current is modulated by the circadian pacemaker in Bulla. J. Biol. Rhythms. 14(2), 141–150.
- 55 Barnes, S., and Jacklet, J. W. (1997). Ionic currents of isolated retinal pacemaker neurons: Projected daily phase differences and selective enhancement by a phase-shifting neurotransmitter. J. Neurophysiol. 77(6), 3075–3084.
- 56 Roberts, S. K. (1974). Circadian rhythms in cockroaches. Effects of optic lobe lesions. J. Comp. Physiol. 88, 21–30.
- 57 Page, T. L., Caldarola, P. C., and Pittendrigh, C. S. (1977). Mutual entrainment of bilaterally distributed circadian pacemaker. Proc. Natl. Acad. Sci. USA 74(3), 1277–1281.
- 58 Page, T. L. (1981). Effects of localized low-temperature pulses on the cockroach circadian pacemaker. Am. J. Physiol. 240(3), R144–R150.
- 59 Page, T. L. (1990). Circadian organization in the cockroach. In Cockroaches as Models for Neurobiology: Applications in Biomedical Research, I. Huber, Ed. CRC Press, Boca Raton, FL, pp. 225–246.
- 60 Guldner, F. H. (1976). Synaptology of the rat suprachiasmatic nucleus. Cell Tissue Res. 165(4), 509–544.
- 61 Moore, R. Y., Speh, J. C., and Leak, R. K. (2002). Suprachiasmatic nucleus organization. Cell Tissue Res. 309(1), 89–98.
- 62 Stephan, F. K., and Zucker, I. (1972). Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69(6), 1583–1586.
- 63 Moore, R. Y., and Eichler, V. B. (1972). Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42(1), 201–206.
- 64 Inouye, S. T., and Kawamura, H. (1979). Persistence of circadian rhythmicity in a mammalian hypothalamic “island” containing the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. USA 76(11), 5962–5966.
- 65 Green, D. J., and Gillette, R. (1982). Circadian rhythm of firing rate recorded from single cells in the rat suprachiasmatic brain slice. Brain Res. 245(1), 198–200.
- 66 Ralph, M. R., et al. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science 247(4945), 975–978.
- 67 Welsh, D. K., et al. (1995). Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14(4), 697–706.
- 68 Reppert, S. M., and Weaver, D. R. (2001). Molecular analysis of mammalian circadian rhythms. Annu. Rev. Physiol. 63, 647–676.
- 69
Vitaterna, M. H.,
Pinto, L. H., and
Turek, F. W.
(2005).
Molecular genetic basis of mammalian circadian rhythms.
In Principles and Practice of Sleep Medicine,
M. H. Kryger,
T. Roth, and
W. C. Dement, Eds.
Elsevier Saunders, Philadelphia,
pp. 363–374.
10.1016/B0-72-160797-7/50037-9 Google Scholar
- 70 Lundkvist, G. B., and Block, G. (2005). The role of neuronal membrane events in circadian rhythm generation. Methods Enzymol. 393, 623–642.
- 71 Nitabach, M. N., Blau, J., and Holmes, T. C. (2002). Electrical silencing of Drosophila pacemaker neurons stops the free-running circadian clock. Cell 109(4), 485–495.
- 72 Nitabach, M. N., Holmes, T. C., and Blau, J. (2005). Membranes, ions, and clocks: Testing the Njus-Sulzman-Hastings model of the circadian oscillator. Methods Enzymol. 393, 682–693.
- 73 Nitabach, M. N., Blau, J., and Holmes, T. C. (2003). Pacemaker membrane excitability controls the period and coherence of the free running Drosophila circadian oscillator. In Abstract Viewer/Itinerary Planner, Program No. 284.11. Society for Neuroscience, Washington, DC.
- 74 Lundkvist, G. B., et al. (2005). A calcium flux is required for circadian rhythm generation in mammalian pacemaker neurons. J. Neurosci. 25(33), 7682–7686.
- 75
Gooley, J., and
Saper, C. B.
(2005).
Anatomy of the mammalian circadian system.
In Principles and Practice of Sleep Medicine,
M. H. Kryger,
T. Roth, and
W. C. Dement, Eds.
Elsevier Saunders, Philadelphia,
pp. 335–350.
10.1016/B0-72-160797-7/50035-5 Google Scholar
- 76 Leak, R. K., and Moore, R. Y. (2001). Topographic organization of suprachiasmatic nucleus projection neurons. J. Comp. Neurol. 433(3), 312–334.
- 77 Chou, T. C., et al. (2003). Critical role of dorsomedial hypothalamic nucleus in a wide range of behavioral circadian rhythms. J. Neurosci. 23(33), 10691–10702.
- 78
Teclemariam-Mesbah, R., et al.
(1999).
Anatomical demonstration of the suprachiasmatic nucleus-pineal pathway.
J. Comp. Neurol.
406(2),
171–182.
10.1002/(SICI)1096-9861(19990405)406:2<171::AID-CNE3>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 79 Silver, R., et al. (1996). A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382(6594), 810–813.
- 80 Kramer, A., et al. (2001). Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294(5551), 2511–2515.
- 81 Cheng, M. Y., et al. (2002). Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417(6887), 405–410.
- 82 Groos, G., and Hendriks, J. (1982). Circadian rhythms in electrical discharge of rat suprachiasmatic neurones recorded in vitro. Neurosci. Lett. 34(3), 283–288.
- 83 Shibata, S., et al. (1982). Circadian rhythmic changes of neuronal activity in the suprachiasmatic nucleus of the rat hypothalamic slice. Brain Res. 247(1), 154–158.
- 84 Bos, N. P., and Mirmiran, M. (1990). Circadian rhythms in spontaneous neuronal discharges of the cultured suprachiasmatic nucleus. Brain Res. 511(1), 158–162.
- 85 Moore, R. Y., and Lenn, N. J. (1972). A retinohypothalamic projection in the rat. J. Comp. Neurol. 146(1), 1–14.
- 86 Hendrickson, A. E., Wagoner, N., and Cowan, W. M. (1972). An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z. Zellforsch. Mikrosk. Anat. 135(1), 1–26.
- 87 Yannielli, P., and Harrington, M. E. (2004). Let there be “more” light: Enhancement of light actions on the circadian system through non-photic pathways. Prog. Neurobiol. 74(1), 59–76.
- 88 Ebling, F. J. (1996). The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog. Neurobiol. 50(2/3), 109–132.
- 89 Travnickova-Bendova, Z., et al. (2002). Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99(11), 7728–7733.
- 90 Nomura, K., et al. (2003). Involvement of calcium/calmodulin-dependent protein kinase II in the induction of mPer1. J. Neurosci. Res. 72(3), 384–392.
- 91 Dziema, H., et al. (2003). The ERK/MAP kinase pathway couples light to immediate-early gene expression in the suprachiasmatic nucleus. Eur. J. Neurosci. 17(8), 1617–1627.
- 92 Tischkau, S. A., et al. (2003). Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 278(2), 718–723.
- 93
Hannibal, J., et al.
(2000).
PACAP and glutamate are co-stored in the retinohypothalamic tract.
J. Comp. Neurol.
418(2),
147–155.
10.1002/(SICI)1096-9861(20000306)418:2<147::AID-CNE2>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 94 Hannibal, J., et al. (1997). Pituitary adenylate cyclase-activating peptide (PACAP) in the retinohypothalamic tract: A potential daytime regulator of the biological clock. J. Neurosci. 17(7), 2637–2644.
- 95 Chen, D., et al. (1999). Pituitary adenylyl cyclase-activating peptide: A pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc. Natl. Acad. Sci. USA 96(23), 13468–13473.
- 96 Harrington, M. E., et al. (1999). Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J. Neurosci. 19(15), 6637–6642.
- 97 Kopp, M. D., et al. (2001). The pituitary adenylate cyclase-activating polypeptide modulates glutamatergic calcium signalling: Investigations on rat suprachiasmatic nucleus neurons. J. Neurochem. 79(1), 161–171.
- 98 Hannibal, J. (2002). Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. 309(1), 73–88.
- 99 Jiao, Y. Y., and Rusak, B. (2003). Electrophysiology of optic nerve input to suprachiasmatic nucleus neurons in rats and degus. Brain Res. 960(1/2), 142–151.
- 100 Ding, J. M., et al. (1994). Resetting the biological clock: Mediation of nocturnal circadian shifts by glutamate and NO. Science 266(5191), 1713–1717.
- 101 Shibata, S., and Moore, R. Y. (1993). Neuropeptide Y and optic chiasm stimulation affect suprachiasmatic nucleus circadian function in vitro. Brain Res. 615(1), 95–100.
- 102 Colwell, C. S., Ralph, M. R., and Menaker, M. (1990). Do NMDA receptors mediate the effects of light on circadian behavior? Brain Res. 523(1), 117–120.
- 103 Mintz, E. M., and Albers, H. E. (1997). Microinjection of NMDA into the SCN region mimics the phase shifting effect of light in hamsters. Brain Res. 758(1/2), 245–249.
- 104 Mintz, E. M., et al. (1999). Activation of NMDA receptors in the suprachiasmatic nucleus produces light-like phase shifts of the circadian clock in vivo. J. Neurosci. 19(12), 5124–5130.
- 105 Gillette, M. U., and Mitchell, J. W. (2002). Signaling in the suprachiasmatic nucleus: Selectively responsive and integrative. Cell Tissue Res. 309(1), 99–107.
- 106 Gillette, M. U., and Prosser, R. A. (1988). Circadian rhythm of the rat suprachiasmatic brain slice is rapidly reset by daytime application of cAMP analogs. Brain Res. 474(2), 348–352.
- 107 Prosser, R. A., and Gillette, M. U. (1989). The mammalian circadian clock in the suprachiasmatic nuclei is reset in vitro by cAMP. J. Neurosci. 9(3), 1073–1081.
- 108 Liu, C., and Gillette, M. U. (1996). Cholinergic regulation of the suprachiasmatic nucleus circadian rhythm via a muscarinic mechanism at night. J. Neurosci. 16(2), 744–751.
- 109 Ding, J. M., et al. (1998). A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394(6691), 381–384.
- 110 Tischkau, S. A., et al. (2003). Circadian clock-controlled regulation of cGMP-protein kinase G in the nocturnal domain. J. Neurosci. 23(20), 7543–7550.
- 111 Hastings, M. H. (1997). Circadian clocks. Curr Biol. 7(11), R670–R672.
- 112 Stehle, J., Vanecek, J., and Vollrath, L. (1989). Effects of melatonin on spontaneous electrical activity of neurons in rat suprachiasmatic nuclei: An in vitro iontophoretic study. J. Neural. Transm. 78(2), 173–177.
- 113 McArthur, A. J., Gillette, M. U., and Prosser, R. A. (1991). Melatonin directly resets the rat suprachiasmatic circadian clock in vitro. Brain Res. 565(1), 158–161.
- 114 McArthur, A. J., Hunt, A. E., and Gillette, M. U. (1997). Melatonin action and signal transduction in the rat suprachiasmatic circadian clock: Activation of protein kinase C at dusk and dawn. Endocrinology 138(2), 627–634.
- 115 Hunt, A. E., et al. (2001). Activation of MT(2) melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am. J. Physiol. Cell Physiol. 280(1), C110–C118.
- 116 Turek, F. W., and Gillette, M. U. (2004). Melatonin, sleep, and circadian rhythms: Rationale for development of specific melatonin agonists. Sleep Med. 5(6), 523–532.
- 117 Gander, P. H., Kronauer, R. E., and Graeber, R. C. (1985). Phase shifting two coupled circadian pacemakers: Implications for jet lag. Am. J. Physiol. 249(6, Pt. 2), R704–R719.
- 118 Jones, S. H. (2001). Circadian rhythms, multilevel models of emotion and bipolar disorder—An initial step towards integration? Clin. Psychol. Rev. 21(8), 1193–1209.
- 119 Granda, T. G., and Levi, F. (2002). Tumor-based rhythms of anticancer efficacy in experimental models. Chronobiol. Int. 19(1), 21–41.
- 120 Buckley, T. M., and Schatzberg, A. F. (2005). On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: Normal HPA Axis activity and circadian rhythm, exemplary sleep disorders. J. Clin. Endocrinol. Metab. 90(5), 3106–3114.
- 121 Mohawk, J. A., Cashen, K., and Lee, T. M. (2005). Inhibiting cortisol response accelerates recovery from a photic phase shift. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288(1), R221–R228.
- 122 Lemmer, B. (1996). The clinical relevance of chronopharmacology in therapeutics. Pharmacol. Res. 33(2), 107–115.
- 123 Nagayama, H. (1999). Influences of biological rhythms on the effects of psychotropic drugs. Psychosom. Med. 61(5), 618–629.
- 124 Jindal, R. D., and Thase, M. E. (2004). Treatment of insomnia associated with clinical depression. Sleep Med. Rev. 8(1), 19–30.
- 125 McEachron, D. L., et al. (1982). Lithium delays biochemical circadian rhythms in rats. Neuropsychobiology 8(1), 12–29.
- 126 Kripke, D. F., and Wyborney, V. G. (1980). Lithium slows rat circadian activity rhythms. Life Sci. 26(16), 1319–1321.
- 127 Engelmann, W. (1972). Lithium slows down the Kalanchoe clock. Z. Naturforsch. B 27(4), 477.
- 128 Seggie, J., Werstiuk, E. S., and Grota, L. (1987). Lithium and circadian patterns of melatonin in the retina, hypothalamus, pineal and serum. Prog. Neuropsychopharmacol. Biol. Psychiatry 11(2/3), 325–334.
- 129 Seggie, J., et al. (1983). Chronic lithium treatment and twenty-four hour rhythm of serum prolactin, growth hormone and melatonin in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 7(4/6), 827–830.
- 130 Welsh, D. K., and Moore-Ede, M. C. (1990). Lithium lengthens circadian period in a diurnal primate, Saimiri sciureus. Biol. Psychiatry 28(2), 117–126.
- 131 Ohta, H., Yamazaki, S., and McMahon, D. G. (2005). Constant light desynchronizes mammalian clock neurons. Nat. Neurosci. 8(3), 267–269.
- 132 Khalsa, S. B., Michel, S., and Block, G. D. (1993). The effects of lithium on a neuronal in vitro circadian pacemaker. Chronobiol. Int. 10(5), 321–330.
- 133 Abe, M., Herzog, E. D., and Block, G. D. (2000). Lithium lengthens the circadian period of individual suprachiasmatic nucleus neurons. Neuroreport 11(14), 3261–3264.
- 134 Iwahana, E., et al. (2004). Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Eur. J. Neurosci. 19(8), 2281–2287.
- 135 LeSauter, J., and Silver, R. (1993). Lithium lengthens the period of circadian rhythms in lesioned hamsters bearing SCN grafts. Biol. Psychiatry 34(1/2), 75–83.
- 136 Hafen, T., and Wollnik, F. (1994). Effect of lithium carbonate on activity level and circadian period in different strains of rats. Pharmacol. Biochem. Behav. 49(4), 975–983.
- 137 Klemfuss, H., and Kripke, D. F. (1995). Antimanic drugs stabilize hamster circadian rhythms. Psychiatry Res. 57(3), 215–222.
- 138 Subramanian, P., et al. (1998). Lithium modulates biochemical circadian rhythms in Wistar rats. Chronobiol. Int. 15(1), 29–38.
- 138a Pablos, M. I., et al. (1994). Influence of lithium salts on chick pineal gland melatonin secretion. Neurosci. Lett. 174(1), 55–57.
- 140 Padiath, Q. S., et al. (2004). Glycogen synthase kinase 3beta as a likely target for the action of lithium on circadian clocks. Chronobiol. Int. 21(1), 43–55.
- 141 Williams, M. B., and Jope, R. S. (1995). Circadian variation in rat brain AP-1 DNA binding activity after cholinergic stimulation: Modulation by lithium. Psychopharmacology (Berl.) 122(4), 363–368.
- 142 Campbell, S. S., et al. (1989). Lithium delays circadian phase of temperature and REM sleep in a bipolar depressive: A case report. Psychiatry Res. 27(1), 23–29.
- 143 Johnsson, A., et al. (1983). Period lengthening of human circadian rhythms by lithium carbonate, a prophylactic for depressive disorders. Int. J. Chronobiol. 8(3), 129–147.
- 144 Benedetti, F., et al. (2001). Sleep phase advance and lithium to sustain the antidepressant effect of total sleep deprivation in bipolar depression: New findings supporting the internal coincidence model? J. Psychiatr. Res. 35(6), 323–329.
- 145 Ho, A. K., Gershon, S., and Pinckney, L. (1970). The effects of acute and prolonged lithium treatment on the distribution of electrolytes, potassium and sodium. Arch. Int. Pharmacodyn. Ther. 186(1), 54–65.
- 146 Hille, B. (1978). Ionic channels in excitable membranes. Current problems and biophysical approaches. Biophys. J. 22(2), 283–294.
- 147 Grafe, P., et al. (1983). Effects of lithium on electrical activity and potassium ion distribution in the vertebrate central nervous system. Brain Res. 279(1/2), 65–76.
- 148 Itri, J. N., et al. (2005). Fast delayed rectifier potassium current is required for circadian neural activity. Nat. Neurosci. 8(5), 650–656.
- 149 Nitabach, M. N., and Blau, J. (2002). Cellular clockwork. Nat. Genet. 32(4), 559–560.
- 150 Pennartz, C. M., et al. (2002). Diurnal modulation of pacemaker potentials and calcium current in the mammalian circadian clock. Nature 416(6878), 286–290.
- 151
Armitage, R.
(2000).
The effects of antidepressants on sleep in patients with depression.
Can. J. Psychiatry
54(9),
803–809.
10.1177/070674370004500903 Google Scholar
- 152 Olsen, O. E., Neckelmann, D., and Ursin, R. (1994). Diurnal differences in l-tryptophan sleep and temperature effects in the rat. Behav. Brain Res. 65(2), 195–203.
- 153 Gao, B., Duncan, W. C., Jr., and Wehr, T. A. (1992). Fluoxetine decreases brain temperature and REM sleep in Syrian hamsters. Psychopharmacology (Berl.) 106(3), 321–329.
- 154 Silvestri, R., et al. (2001). Effects of fluvoxamine and paroxetine on sleep structure in normal subjects: A home-based Nightcap evaluation during drug administration and withdrawal. J. Clin. Psychiatry 62(8), 642–652.
- 155 Armitage, R., et al. (1997). A multicenter, double-blind comparison of the effects of nefazodone and fluoxetine on sleep architecture and quality of sleep in depressed outpatients. J. Clin. Psychopharmacol. 17(3), 161–168.
- 156 Nicholson, A. N., and Pascoe, P. A. (1988). Studies on the modulation of the sleep-wakefulness continuum in man by fluoxetine, a 5-HT uptake inhibitor. Neuropharmacology 27(6), 597–602.
- 157 Hendrickse, W. A., et al. (1994). The effects of fluoxetine on the polysomnogram of depressed outpatients: A pilot study. Neuropsychopharmacology 10(2), 85–91.
- 158 Schlosser, R., et al. (1998). Conventional and spectral power analysis of all-night sleep EEG after subchronic treatment with paroxetine in healthy male volunteers. Eur. Neuropsychopharmacol. 8(4), 273–278.
- 159 Saletu, B., et al. (1991). Sleep laboratory studies on the single-dose effects of serotonin reuptake inhibitors paroxetine and fluoxetine on human sleep and awakening qualities. Sleep 14(5), 439–447.
- 160 Urban, R. J., and Veldhuis, J. D. (1991). A selective serotonin reuptake inhibitor, fluoxetine hydrochloride, modulates the pulsatile release of prolactin in postmenopausal women. Am. J. Obstet. Gynecol. 164(1, Pt. 1), 147–152.
- 161 Morin, L. P. (1999). Serotonin and the regulation of mammalian circadian rhythmicity. Ann. Med. 31(1), 12–33.
- 162 Duncan, W. C., Jr., Johnson, K. A., and Wehr, T. A. (1999). 5-HT agonist-induced phase-advances of the circadian pacemaker are diminished by chronic antidepressant drug treatment. Brain Res. 815(1), 126–130.
- 163 Moriya, T., et al. (1998). Potentiating action of MKC-242, a selective 5-HT1A receptor agonist, on the photic entrainment of the circadian activity rhythm in hamsters. Br. J. Pharmacol. 125(6), 1281–1287.
- 164 Takahashi, S., et al. (2002). Extended action of MKC-242, a selective 5-HT(1A) receptor agonist, on light-induced Per gene expression in the suprachiasmatic nucleus in mice. J. Neurosci. Res. 68(4), 470–478.
- 165 Shigeyoshi, Y., Maebayashi, Y., and Okamura, H. (1997). Co-localization of preprosomatostatin mRNA and preprotachykinin A mRNA in neurons of the rat suprachiasmatic nucleus. Brain Res. Mol. Brain Res. 48(1), 159–163.
- 166 Akiyama, M., Kouzu, Y., Takahashi, S., Wakamatsu, H., Moriya, T., Maetani, M., Watanabe, S., Tei, H., Sakaki, Y., and Shibata, S. (1999). Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J. Neurosci. 19(3), 1115–1121.
- 167 Wakamatsu, H., et al. (2001). Additive effect of mPer1 and mPer2 antisense oligonucleotides on light-induced phase shift. Neuroreport 12(1), 127–131.
- 168 Wollnik, F. (1992). Effects of chronic administration and withdrawal of antidepressant agents on circadian activity rhythms in rats. Pharmacol. Biochem. Behav. 43(2), 549–561.
- 169 Weiss, G. F., et al. (1991). Effect of hypothalamic and peripheral fluoxetine injection on natural patterns of macronutrient intake in the rat. Psychopharmacology (Berl.) 105(4), 467–476.
- 170 Rosenwasser, A. M. (1996). Clonidine shortens circadian period in both constant light and constant darkness. Physiol. Behav. 60(2), 373–379.
- 171 Linkowski, P. (2003). Neuroendocrine profiles in mood disorders. Int. J. Neuropsychopharmacol. 6(2), 191–197.
- 172 Linkowski, P., et al. (1987). 24-Hour profiles of adrenocorticotropin, cortisol, and growth hormone in major depressive illness: Effect of antidepressant treatment. J. Clin. Endocrinol. Metab. 65(1), 141–152.
- 173 Steiger, A., et al. (1991). Sleep EEG and nocturnal secretion of testosterone and cortisol in patients with major endogenous depression during acute phase and after remission. J. Psychiatr. Res. 25(4), 169–177.
- 174 Rota, E., et al. (2005). Neuroendocrine (HPA axis) and clinical correlates during fluvoxamine and amitriptyline treatment. Psychiatry Res. 133(2/3), 281–284.
- 175 Young, E. A., et al. (2004). HPA axis activation in major depression and response to fluoxetine: A pilot study. Psychoneuroendocrinology 29(9), 1198–1204.
- 176 Reul, J. M., et al. (1993). Chronic treatment of rats with the antidepressant amitriptyline attenuates the activity of the hypothalamic-pituitary-adrenocortical system. Endocrinology 133(1), 312–320.
- 177 Gomez, F., et al. (1998). The effect of chronic administration of antidepressants on the circadian pattern of corticosterone in the rat. Psychopharmacology (Berl.) 140(2), 127–134.
- 178 Hermesh, H., et al. (2001). Circadian rhythm sleep disorders as a possible side effect of fluvoxamine. CNS Spectr. 6(6), 511–513.
- 179 Benedetti, F., et al. (2003). Morning light treatment hastens the antidepressant effect of citalopram: A placebo-controlled trial. J. Clin. Psychiatry 64(6), 648–653.
- 180 Burgess, H. J., et al. (2004). Bright light therapy for winter depression—Is phase advancing beneficial? Chronobiol. Int. 21(4/5), 759–775.
- 181 Baumann, B., et al. (2004). Mechanisms of action in the prevention of recurrent mood disorders. Pharmacopsychiatry 37(Suppl. 2), S157–S164.
- 182 Turek, F. W., and Van Reeth, O. (1989). Use of benzodiazepines to manipulate the circadian clock regulating behavioral and endocrine rhythms. Horm. Res. 31(1/2), 59–65.
- 183 Penev, P. D., Turek, F. W., and Zee, P. C. (1995). A serotonin neurotoxin attenuates the phase-shifting effects of triazolam on the circadian clock in hamsters. Brain Res. 669(2), 207–216.
- 184 Cutrera, R. A., Ouarour, A., and Pevet, P. (1994). Effects of the 5-HT1a receptor agonist 8-OH-DPAT and other non-photic stimuli on the circadian rhythm of wheel-running activity in hamsters under different constant conditions. Neurosci. Lett. 172(1/2), 27–30.
- 185 Buxton, O. M., et al. (2000). A benzodiazepine hypnotic facilitates adaptation of circadian rhythms and sleep-wake homeostasis to an eight hour delay shift simulating westward jet lag. Sleep 23(7), 915–927.
- 186 Boulos, Z., and Houpt, T. A. (1994). Failure of triazolam to alter circadian reentrainment rates in squirrel monkeys. Pharmacol. Biochem. Behav. 47(3), 471–476.
- 187 Hajak, G., et al. (1996). Nocturnal plasma melatonin levels after flunitrazepam administration in healthy subjects. Eur. Neuropsychopharmacol. 6(2), 149–153.
- 188 Strecker, G. J., Park, W. K., and Dudek, F. E. (1999). Zinc and flunitrazepam modulation of GABA-mediated currents in rat suprachiasmatic neurons. J. Neurophysiol. 81(1), 184–191.
- 189 Akiyama, M., Kirihara, T., Takahashi, S., Minami, Y., Yoshinobu, Y., Moriya, T., and Shibata, S. (1999). Modulation of mPer1 gene expression by anxiolytic drugs in mouse cerebellum. Br. J. Pharmacol. 128(7), 1616–1622.
- 190 Vansteensel, M. J., et al. (2003). Differential responses of circadian activity onset and offset following GABA-ergic and opioid receptor activation. J. Biol. Rhythms 18(4), 297–306.
- 191 Subramanian, P., and Subbaraj, R. (1996). Diazepam modulates the period of locomotor rhythm in mice (Mus booduga) and attenuates light-induced phase advances. Pharmacol. Biochem. Behav. 54(2), 393–398.
- 192 Okawa, M., et al. (1987). Four congenitally blind children with circadian sleep-wake rhythm disorder. Sleep 10(2), 101–110.
- 193 Krueger, J. M., et al. (2001). The role of cytokines in physiological sleep regulation. Ann. NY Acad. Sci. 933, 211–221.
- 194 Opal, S. M., and DePalo, V. A. (2000). Anti-inflammatory cytokines. Chest 117(4), 1162–1172.
- 195 Hart, B. L. (1988). Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12(2), 123–137.
- 196 Huang, Y. L., et al. (2002). Age-associated difference in circadian sleep-wake and rest-activity rhythms. Physiol. Behav. 76(4/5), 597–603.
- 197 Bliwise, D. L. (2004). Sleep disorders in Alzheimer's disease and other dementias. Clin. Cornerstone 6(Suppl. 1A), S16–S28.
- 198 Van Someren, E. J. (2000). Circadian and sleep disturbances in the elderly. Exp. Gerontol. 35(9/10), 1229–1237.
- 199 Thorpy, M. J. (2004). Sleep disorders in Parkinson's disease. Clin. Cornerstone. 6(Suppl. 1A), S7–S15.
- 200 Sephton, S., and Spiegel, D. (2003). Circadian disruption in cancer: A neuroendocrine-immune pathway from stress to disease? Brain Behav. Immun. 17(5), 321–328.
- 201 Attarian, H. P., et al. (2004). The relationship of sleep disturbances and fatigue in multiple sclerosis. Arch. Neurol. 61(4), 525–528.
- 202 Rich, T., et al. (2005). Elevated serum cytokines correlated with altered behavior, serum cortisol rhythm, and dampened 24-hour rest-activity patterns in patients with metastatic colorectal cancer. Clin. Cancer Res. 11(5), 1757–1764.
- 203 Foley, F. W., et al. (1992). A prospective study of depression and immune dysregulation in multiple sclerosis. Arch. Neurol. 49(3), 238–244.
- 204 Patten, S. B., et al. (2003). Major depression in multiple sclerosis: A population-based perspective. Neurology 61(11), 1524–1527.
- 205 Zephir, H., et al. (2003). Multiple sclerosis and depression: Influence of interferon beta therapy. Mult. Scler. 9(3), 284–288.
- 206 Bentivoglio, M., et al. (1994). Neuronal IFN-gamma in tuberomammillary neurones. Neuroreport 5(18), 2413–2416.
- 207 Buguet, A., et al. (1989). 24 Hour polysomnographic evaluation in a patient with sleeping sickness. Electroencephalogr. Clin. Neurophysiol. 72(6), 471–478.
- 208 Buguet, A., et al. (1993). Sleep-wake cycle in human African trypanosomiasis. J. Clin. Neurophysiol. 10(2), 190–196.
- 209 Lundkvist, G. B., Kristensson, K., and Bentivoglio, M. (2004). Why trypanosomes cause sleeping sickness. Physiology (Bethesda) 19, 198–206.
- 210 Franceschi, C., et al. (2001). Neuroinflammation and the genetics of Alzheimer's disease: The search for a pro-inflammatory phenotype. Aging (Milano) 13(3), 163–170.
- 211 Lue, L. F., et al. (2001). Inflammatory repertoire of Alzheimer's disease and nondemented elderly microglia in vitro. Glia 35(1), 72–79.
- 212 Sly, L. M., et al. (2001). Endogenous brain cytokine mRNA and inflammatory responses to lipopolysaccharide are elevated in the Tg2576 transgenic mouse model of Alzheimer's disease. Brain Res. Bull. 56(6), 581–588.
- 213 O'Brien, S. M., Scott, L. V., and Dinan, T. G. (2004). Cytokines: Abnormalities in major depression and implications for pharmacological treatment. Hum. Psychopharmacol. 19(6), 397–403.
- 214 Kenis, G., and Maes, M. (2002). Effects of antidepressants on the production of cytokines. Int. J. Neuropsychopharmacol. 5(4), 401–412.
- 215 Lynch, A. M., and Lynch, M. A. (2002). The age-related increase in IL-1 type I receptor in rat hippocampus is coupled with an increase in caspase-3 activation. Eur. J. Neurosci. 15(11), 1779–1788.
- 216 Ye, S. M., and Johnson, R. W. (2001). An age-related decline in interleukin-10 may contribute to the increased expression of interleukin-6 in brain of aged mice. Neuroimmunomodulation 9(4), 183–192.
- 217 Tha, K. K., et al. (2000). Changes in expressions of proinflammatory cytokines IL-1beta, TNF-alpha and IL-6 in the brain of senescence accelerated mouse (SAM) P8. Brain Res. 885(1), 25–31.
- 218 Wei, Y. P., et al. (2000). Expression of IFN-gamma in cerebrovascular endothelial cells from aged mice. J. Interferon Cytokine Res. 20(4), 403–409.
- 219 Born, J., et al. (1995). Cytokine production and lymphocyte subpopulations in aged humans. An assessment during nocturnal sleep. Mech. Ageing Dev. 84(2), 113–126.
- 220 Godbout, J. P., and Johnson, R. W. (2004). Interleukin-6 in the aging brain. J. Neuroimmunol. 147(1/2), 141–144.
- 221
Rhind, S. G., and
Shek, P. N.
(1999).
Cytokines in the pathogenesis of human African trypanosomiasis: Antagonistic roles of TNF-α and IL-10.
In Progress in Human African Trypanosomiasis, Sleeping Sickness,
M. Dumas,
B. Bouteille, and
A. Buguet, Eds.
Springer, Paris,
pp. 119–135.
10.1007/978-2-8178-0857-4_7 Google Scholar
- 222
Quan, N., et al.
(1999).
Chronic overexpression of proinflammatory cytokines and histopathology in the brains of rats infected with Trypanosoma brucei.
J. Comp. Neurol.
414(1),
114–130.
10.1002/(SICI)1096-9861(19991108)414:1<114::AID-CNE9>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 223 Radomski, M. W., et al. (1994). Disruptions in the secretion of cortisol, prolactin, and certain cytokines in human African trypanosomiasis patients. Bull. Soc. Pathol. Exot. 87(5), 376–379.
- 224 Connor, T. J., et al. (1998). An assessment of the effects of central interleukin-1beta, -2, -6, and tumor necrosis factor-alpha administration on some behavioural, neurochemical, endocrine and immune parameters in the rat. Neuroscience 84(3), 923–933.
- 225
Walker, L. G., et al.
(1997).
The psychological and psychiatric effects of rIL-2 therapy: A controlled clinical trial.
Psychooncology
6(4),
290–301.
10.1002/(SICI)1099-1611(199712)6:4<290::AID-PON283>3.0.CO;2-G CAS PubMed Web of Science® Google Scholar
- 226 Robertson, B., et al. (2000). Interferon-gamma-responsive neuronal sites in the normal rat brain: Receptor protein distribution and cell activation revealed by Fos induction. Brain Res. Bull. 52(1), 61–74.
- 227 Lundkvist, G. B., et al. (1998). Altered neuronal activity rhythm and glutamate receptor expression in the suprachiasmatic nuclei of Trypanosoma brucei-infected rats. J. Neuropathol. Exp. Neurol. 57(1), 21–29.
- 228 Lundkvist, G. B., et al. (1999). Light-dependent regulation and postnatal development of the interferon-gamma receptor in the rat suprachiasmatic nuclei. Brain Res. 849(1/2), 231–234.
- 229 Ohdo, S., et al. (2001). Changing the dosing schedule minimizes the disruptive effects of interferon on clock function. Nat. Med. 7(3), 356–360.
- 230 Boggio, V. I., et al. (2003). Cerebroventricular administration of interferon-gamma modifies locomotor activity in the golden hamster. Neurosignals 12(2), 89–94.
- 231 Paludan, S. R. (2000). Synergistic action of pro-inflammatory agents: Cellular and molecular aspects. J. Leukoc. Biol. 67(1), 18–25.
- 232 Lundkvist, G. B., Hill, R. H., and Kristensson, K. (2002). Disruption of circadian rhythms in synaptic activity of the suprachiasmatic nuclei by African trypanosomes and cytokines. Neurobiol. Dis. 11(1), 20–27.
- 233 Kwak, Y., Lundkvist, G. B., Brask, J., Menaker, M., Kristensson, K., and Block, G. D. (2005). Cytokines alter impulse regularity and spontaneous postsynaptic activity in suprachiasmatic nucleus neurons. In Society for Neuroscience Abstracts, Washington D.C.
- 234 Marpegan, L., et al. (2005). Circadian responses to endotoxin treatment in mice. J. Neuroimmunol. 160(1/2), 102–109.
- 235 Koyanagi, S., and Ohdo, S. (2002). Alteration of intrinsic biological rhythms during interferon treatment and its possible mechanism. Mol. Pharmacol. 62(6), 1393–1399.
- 236 Antle, M. C., Steen, N. M., and Mistlberger, R. E. (2001). Adenosine and caffeine modulate circadian rhythms in the Syrian hamster. Neuroreport 12(13), 2901–2905.
- 237 O'Hara, B. F., et al. (1998). Nicotine and nicotinic receptors in the circadian system. Psychoneuroendocrinology 23(2), 161–173.
- 238 Rosenwasser, A. M. (2001). Alcohol, antidepressants, and circadian rhythms. Human and animal models. Alcohol Res. Health 25(2), 126–135.
- 239 Filipski, E., et al. (2004). Effects of chronic jet lag on tumor progression in mice. Cancer Res. 64(21), 7879–7885.
- 240 Filipski, E., et al. (2005). Effects of light and food schedules on liver and tumor molecular clocks in mice. J. Natl. Cancer Inst. 97(7), 507–517.
- 241 Filipski, E., et al. (2003). Disruption of circadian coordination accelerates malignant growth in mice. Pathol. Biol. (Paris) 51(4), 216–219.
- 242 Lee, C. C. (2005). The circadian clock and tumor suppression by mammalian period genes. Methods Enzymol. 393, 852–861.