Advances in Symmetry-Based Pulse Sequences in Magic-Angle Spinning Solid-State NMR
2013 - Volume 2 eMagRes
Volume 2, Issue 3
Abstract
We review the recent progress in symmetry-based pulse sequences suitable for recoupling and decoupling purposes under magic-angle spinning conditions. The basic average Hamiltonian theory of the pulse schemes is outlined up to second order, and the theory and applications of supercycles are discussed. Some new application areas of symmetry-based pulse schemes for determining molecular structure are also discussed.
References
- 1 N. C. Nielsen, H. Bildsoe, H. J. Jakobsen, and M. H. Levitt, J. Chem. Phys., 1994, 101, 1805–1812.
- 2 Y. K. Lee, N. D. Kurur, M. Helmle, O. G. Johannessen, N. C. Nielsen, and M. H. Levitt, Chem. Phys. Lett., 1995, 242, 304–309.
- 3 M. Hohwy, H. J. Jakobsen, M. Edén, M. H. Levitt, and N. C. Nielsen, J. Chem. Phys., 1998, 108, 2686–2694.
- 4 C. M. Rienstra, M. E. Hatcher, L. J. Mueller, B. Sun, S. W. Fesik, and R. G. Griffin, J. Am. Chem. Soc., 1998, 120, 10602–10612.
- 5 J. D. Gross, P. R. Costa, and R. G. Griffin, J. Chem. Phys., 1998, 108, 7286–7293.
- 6 M. Hohwy, C. M. Rienstra, C. P. Jaroniec, and R. G. Griffin, J. Chem. Phys., 1999, 110, 7983–7992.
- 7 M. Edén and M. H. Levitt, J. Chem. Phys., 1999, 111, 1511–1519.
- 8 A. Brinkmann, M. Edén, and M. H. Levitt, J. Chem. Phys., 2000, 112, 8539–8554.
- 9 M. Carravetta, M. Edén, X. Zhao, A. Brinkmann, and M. H. Levitt, Chem. Phys. Lett., 2000, 321, 205–215.
- 10 A. Brinkmann and M. H. Levitt, J. Chem. Phys., 2001, 115, 357–384.
- 11 M. H. Levitt, Symmetry-based pulse sequences in magic-angle spinning solid state NMR, in ‘Encyclopedia of Magnetic Resonance: Advances in NMR’, eds D. M. Grant and R. K. Harris, John Wiley & Sons, Ltd: Chicester, 2002, Vol. 9.
- 12 M. H. Levitt, J. Chem. Phys., 2008, 128, 052205.
- 13 M. Carravetta, M. Edén, O. G. Johannessen, H. Luthman, P. J. E. Verdegem, J. Lugtenburg, A. Sebald, and M. H. Levitt, J. Am. Chem. Soc., 2001, 123, 10628–10638.
- 14 M. Mehring, Internal spin interactions and rotations in solids, in 'Encyclopedia of Magnetic Resonance', eds D. M. Grant and R. K. Harris, John Wiley & Sons, Ltd: Chicester, 1995, Vol. 4.
- 15 R. G. Griffin, Rotating solids, in ‘Encyclopedia of Magnetic Resonance’, eds D. M. Grant and R. K. Harris, John Wiley & Sons, Ltd: Chicester, 1995, Vol. 7.
- 16 T. G. Oas, R. G. Griffin, and M. H. Levitt, J. Chem. Phys., 1988, 89, 692–695.
- 17 J. S. Waugh, Average Hamiltonian theory, in ‘Encyclopedia of Magnetic Resonance’, eds D. M. Grant, and R. K. Harris, John Wiley & Sons, Ltd: Chicester, 1995, Vol. 2.
- 18 W. Magnus, Commun. Pure Appl. Math., 1954, 7, 649–673.
- 19 R. Tycko and G. Dabbagh, J. Am. Chem. Soc., 1991, 113, 9444–9448.
- 20 G. Teymoori, B. Pahari, B. Stevensson, and M. Edén, Chem. Phys. Lett., 2012, 547, 103–109.
- 21 A. Brinkmann and M. Edén, J. Chem. Phys., 2004, 120, 11726–11745.
- 22 P. E. Kristiansen, M. Carravetta, J. D. van Beek, W. C. Lai, and M. H. Levitt, J. Chem. Phys., 2006, 124, 234510.
- 23 M. Edén, Chem. Phys. Lett., 2002, 366, 469–476.
- 24 M. Edén and A. Brinkmann, J. Magn. Reson., 2005, 173, 259–279.
- 25 A. Brinkmann, A. P. M. Kentgens, T. Anupold, and A. Samoson, J. Chem. Phys., 2008, 129, 174507.
- 26 F.-C. Chou, H.-K. Lee, and J. C. C. Chan, J. Chem. Phys., 2010, 133, 114503.
- 27 H. Geen, J. J. Titman, J. Gottwald, and H. W. Spiess, J. Magn. Reson., Ser. A, 1995, 114, 264–267.
- 28 A. Brinkmann, J. Schmedt auf der Günne, and M. H. Levitt, J. Magn. Reson., 2002, 156, 79–96.
- 29 T. Karlsson, J. M. Popham, J. R. Long, N. Oyler, and G. P. Drobny, J. Am. Chem. Soc., 2003, 125, 7394–7407.
- 30 P. E. Kristiansen, M. Carravetta, W. C. Lai, and M. H. Levitt, Chem. Phys. Lett., 2004, 390, 1–7.
- 31 D. H. Brouwer, P. E. Kristiansen, C. A. Fyfe, and M. H. Levitt, J. Am. Chem. Soc., 2005, 127, 542–543.
- 32 D. H. Brouwer, R. J. Darton, R. E. Morris, and M. H. Levitt, J. Am. Chem. Soc., 2005, 127, 10365–10370.
- 33 M. Edén, H. Annersten, and A. A. Zazzi, Chem. Phys. Lett., 2005, 410, 24–30.
- 34 M. Edén, D. Zhou, and J. Yu, Chem. Phys. Lett., 2006, 431, 397–403.
- 35 A. Y. H. Lo and M. Edén, Phys. Chem. Chem. Phys., 2008, 10, 6635–6644.
- 36 M. Edén and A. Y. H. Lo, J. Magn. Reson., 2009, 200, 267–279.
- 37 A. Brinkmann and A. P. M. Kentgens, J. Phys. Chem. B, 2006, 110, 16089–16101.
- 38 A. Brinkmann and A. P. M. Kentgens, J. Am. Chem. Soc., 2006, 128, 14758–14759.
- 39 W. S. Warren, D. P. Weitekamp, and A. Pines, J. Chem. Phys., 1980, 73, 2084–2099.
- 40 M. Hohwy and N. C. Nielsen, J. Chem. Phys., 1997, 106, 7571–7586.
- 41 A. Bodholt Nielsen, S. K. Jain, and N. C. Nielsen, Chem. Phys. Lett., 2011, 503, 310–315
- 42 Y. Nishiyama, T. Yamazaki, and T. Terao, J. Chem. Phys., 2006, 124, 064304.
- 43 C. E. Hughes, J. Schmedt auf der Günne, and M. H. Levitt, ChemPhysChem, 2003, 4, 457–465.
- 44 M. Shen, B. Hu, O. Lafon, J. Trébosc, Q. Chen, and J.-P. Amoureux, J. Magn. Reson., 2012, 223, 107–119.
- 45 M. Bjerring and N. C. Nielsen, Chem. Phys. Lett., 2003, 370, 496–503.
- 46 C. Herbst, J. Herbst, A. Kirschtein, J. Leppert, O. Ohlenschläger, M. Görlach, and R. Ramachandran, J. Biomol. NMR, 2011, 50, 277–284.
- 47 M. Hohwy, C. P. Jaroniec, C. M. Rienstra, and R. G. Griffin, J. Am. Chem. Soc., 2000, 112, 3248–3261.
- 48 X. Zhao, M. Edén, and M. H. Levitt, Chem. Phys. Lett., 2001, 342, 353–361.
- 49 G. Hou, S. Paramasivam, I.-J. L. Byeon, A. M. Gronenborn, and T. Polenova, Phys. Chem. Chem. Phys., 2010, 12, 14873–14883.
- 50 G. Hou, I.-J. L. Byeon, J. Ahn, A. M. Gronenborn, and T. Polenova, J. Am. Chem. Soc., 2011, 133, 18646–18655.
- 51 G. Hou, I.-J. L. Byeon, J. Ahn, A. M. Gronenborn, and T. Polenova, J. Chem. Phys., 2012, 137, 134201.
- 52 X. Zhao, J. L. Sudmeier, W. W. Bachovchin, and M. H. Levitt, J. Am. Chem. Soc., 2001, 123, 11097–11098.
- 53 M. Edén, Chem. Phys. Lett., 2003, 378, 55–64.
- 54 D. H. Brouwer and J. A. Ripmeester, J. Magn. Reson., 2007, 185, 173–178.
- 55 G. Hou, S. Paramasivam, S. Yan, T. Polenova, and A. J. Vega, J. Am. Chem. Soc., 2013, 135, 1358–1368.
- 56 X. Zhao, W. Hoffbauer, J. Schmedt auf der Günne, and M. H. Levitt, Solid State Nucl. Magn. Reson., 2004, 26, 57–64.
- 57 A. Brinkmann, V. M. Litvinov, and A. P. M. Kentgens, Magn. Reson. Chem., 2007, 45, S231–S246.
- 58 Z. Tošner, O. Petrov, S. V. Dvinskikh, J. Kowalewski, and D. Sandström, Chem. Phys. Lett., 2004, 388, 208–211.
- 59 S. Nikkhou Aski, A. Y. H. Lo, T. Brotin, J. P. Dutasta, M. Edén, and J. Kowalewski, J. Phys. Chem. C, 2008, 112, 13873–13881.
- 60 S. V. Dvinskikh, H. Zimmermann, A. Maliniak, and D. Sandström, J. Magn. Reson., 2004, 168, 194–201.
- 61 S. V. Dvinskikh, V. Castro, and D. Sandström, Phys. Chem. Chem. Phys., 2005, 7, 607–613.
- 62 T. M. Ferreira, B. Medronho, R. W. Martin, and D. Topgaard, Phys. Chem. Chem. Phys., 2008, 10, 6033–6038.
- 63 J. C. C. Chan, Chem. Phys. Lett., 2001, 335, 289–297.
- 64 J. C. C. Chan and H. Eckert, J. Chem. Phys., 2001, 115, 6095–6105.
- 65 J. C. C. Chan and R. Tycko, J. Chem. Phys., 2003, 118, 8378–8388.
- 66 S. Cavadini, A. Abraham, and G. Bodenhausen, Chem. Phys. Lett., 2007, 445, 1–5.
- 67 J. D. van Beek, R. Dupree, and M. H. Levitt, J. Magn. Reson., 2006, 179, 38–48.
- 68 M. Goswami and P. K. Madhu, J. Magn. Reson., 2012, 219, 4–12.
- 69 L. Chen, Q. Wang, B. Hu, O. Lafon, J. Trébosc, F. Deng, and J.-P. Amoureux, Phys. Chem. Chem. Phys., 2010, 12, 9395–9405.
- 70 L. Martel, S. Cadars, E. Véron, D. Massiot, and M. Deschamps, Solid State Nucl. Magn. Reson., 2012, 45-46, 1–10.
- 71 M. Edén, Solid State Nucl. Magn. Reson., 2009, 36, 1–10.
- 72 G. Mali, V. Kaucic, and F. Taulelle, J. Chem. Phys., 2008, 128, 204503.
- 73 M. Edén, Chem. Phys. Lett., 2009, 470, 318–324.
- 74 M. Edén, J. Magn. Reson., 2010, 204, 99–110.
- 75 M. R. Hansen, H. J. Jakobsen, and J. Skibsted, J. Phys. Chem. C, 2008, 112, 7210–7222.
- 76 A. Brinkmann and M. Edén, Can. J. Chem., 2011, 89, 892–899.
- 77 A. Jaworski, B. Stevensson, B. Pahari, K. Okhotnikov, and M. Edén, Phys. Chem. Chem. Phys., 2012, 14, 15866–15878.
- 78 P. E. Kristiansen, D. J. Mitchell, and J. N. S. Evans, J. Magn. Reson., 2002, 157, 253–266.
- 79 L. Mafra, R. Siegel, C. Fernandez, D. Schneider, F. Aussenac, and J. Rocha, J. Magn. Reson., 2009, 199, 111–114.
- 80 C. Herbst, J. Herbst, A. Kirschtein, J. Leppert, O. Ohlenschläger, M. Görlach, and R. Ramachandran, J. Biomol. NMR, 2009, 44, 175–184.
- 81 C. Herbst, J. Herbst, A. Kirschtein, J. Leppert, O. Ohlenschläger, M. Görlach, and R. Ramachandran, J. Biomol. NMR, 2009, 44, 235–244.
- 82 A. Bodholt Nielsen, M. Bjerring, J. T. Nielsen, and N. C. Nielsen, J. Chem. Phys., 2009, 131, 025101.
- 83 G. Hou, S. Yan, S. Sun, Y. Han, I.-J. L. Byeon, J. Ahn, J. Concel, A. Samoson, A. M. Gronenborn, and T. Polenova, J. Am. Chem. Soc., 2011, 133, 3943–3953.
- 84 K. Takegoshi, S. Nakamura, and T. Terao, J. Chem. Phys., 2003, 118, 2325–2341.
- 85 B. Hu, Q. Wang, O. Lafon, J. Trébosc, F. Deng, and J.-P. Amoureux, J. Magn. Reson., 2009, 198, 41–48.
- 86 O. Lafon, J. Trébosc, B. Hu, G. De Paëpe, and J.-P. Amoureux, Chem. Commun., 2011, 47, 6930–6932.
- 87 P. K. Madhu, X. Zhao, and M. H. Levitt, Chem. Phys. Lett., 2001, 346, 2142–2148.
- 88 S. Paul, R. S. Thakur, and P. K. Madhu, Chem. Phys. Lett., 2008, 456, 253–256.
- 89 O. Lafon, Q. Wang, B. Hu, J. Trébosc, F. Deng, and J.-P. Amoureux, J. Chem. Phys., 2009, 130, 014504
- 90 K. Riedel, C. Herbst, J. Leppert, O. Ohlenschläger, M. Görlach, and R. Ramachandran, Chem. Phys. Lett., 2006, 429, 590–594.
- 91 M. Kotecha, N. P. Wickramasinghe, and Y. Ishii, Magn. Reson. Chem., 2007, 45, S221–S230.
- 92 C. E. Hughes, S. Luca, and M. Baldus, Chem. Phys. Lett., 2004, 385, 435–440.
- 93 I. Marin-Montesinos, D. H. Brouwer, G. Antonioli, W. C. Lai, A. Brinkmann, and M. H. Levitt, J. Magn. Reson., 2005, 177, 330–340.
Citing Literature
Browse other articles of this reference work: