Cell Membranes: Protein Components and Functions
Part 7. Polyamides and Complex Proteinaceous Materials
Dr. William C. Wimley,
Dr. William C. Wimley
- [email protected]
- +1-504-988-7076 | Fax: +1-504-584-2739
Tulane University Health Sciences Center, Department of Biochemistry SL43, 1430 Tulane Avenue, New Orleans, LA, USA, 70112
Search for more papers by this authorDr. William C. Wimley,
Dr. William C. Wimley
- [email protected]
- +1-504-988-7076 | Fax: +1-504-584-2739
Tulane University Health Sciences Center, Department of Biochemistry SL43, 1430 Tulane Avenue, New Orleans, LA, USA, 70112
Search for more papers by this authorFirst published: 15 January 2005
Abstract
- Introduction
- Historical Outline
- The Fluid Mosaic Model of Biological Membranes
- Chemical Structures
- The Lipid Bilayer Milieu
- Physical Properties of Lipid Bilayer Membranes
- Polypeptides in Membranes
- Physical Forces Acting on Membrane Proteins
- α-Helical Membrane Proteins
- β-Barrel Membrane Proteins
- Monotopic Membrane Proteins
- Lipid-Linked Membrane Proteins
- Composition and Organization of Biological Membranes
- Genomics and Proteomics
- Biological Functions
- Information Transfer
- Material Transfer
- Transport Down Concentration Gradients
- Transport Against Concentration Gradients
- Electron Transport Chains
- Membrane Protein Enzymes
- Membrane Anchors
- Outlook and Perspectives
- Patents
References
- Albers, S. V., van de Vossenberg, J. L., Driessen, A. J., Konings, W. N. (2000) Adaptations of the archaeal cell membrane to heat stress, Front. Biosci. 5, D813–D820.
- Alm, R. A., Bina, J., Andrews, B. M., Doig, P., Hancock, R. E., Trust, T. J. (2000) Comparative genomics of Helicobacter pylori: analysis of the outer membrane protein families, Infect. Immun. 68, 4155–4168.
-
Arkin, I. T.,
Brünger, A. T.,
Engelman, D. M.
(1997)
Are there dominant membrane protein families with a given number of helices? Proteins 28,
465–466.
10.1002/(SICI)1097-0134(199708)28:4<465::AID-PROT1>3.0.CO;2-9 CAS PubMed Web of Science® Google Scholar
- Bangham, A. D., de Gier, J., Greville, G. D. (1967) Osmotic properties and water permeability of phospholipid liquid crystals, Chem. Phys. Lipids 1, 225–246.
- Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., Rapp, B. A., Wheeler, D. L. (2002) GenBank, Nucleic Acids Res. 30, 17–20.
- Berman, H. M., Bhat, T. N., Bourne, P. E., Feng, Z., Gilliland, G., Weissig, H., Westbrook, J. (2000a) The Protein Data Bank and the challenge of structural genomics, Nature Struct. Biol. 7 (Suppl., 957–959.
- Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., Bourne, P. E. (2000b) The Protein Data Bank, Nucleic Acids Res. 28, 235–242.
- Bray, D. (1998) Signaling complexes: biophysical constraints on intracellular communication, Annu. Rev. Biophys. Biomol. Struct. 27, 59–75.
- Bren, A., Eisenbach, M. (2000) How signals are heard during bacterial chemotaxis: protein-protein interactions in sensory signal propagation, J. Bacteriol. 182, 6865–6873.
- Buchanan, S. K., Smith, B. S., Venkatramani, L., Xia, D., Esser, L., Palnitkar, M., Chakraborty, R., van der Helm, D., Deisenhofer, J. (1999) Crystal structure of the outer membrane active transporter FepA from Escherichia coli, Nature Struct. Biol. 6, 56–63.
- Carpenter, G. (2000) The EGF receptor: a nexus for trafficking and signaling, BioEssays 22, 697–707.
- Chang, C. H., Elkabbani, O., Tiede, D., Norris, J., Schiffer, M. (1991) Structure of the membrane-bound protein photosynthetic reaction center from Rhodobacter sphaeroides, Biochemistry 30, 5352–5360.
- Chapman, D. (1966) Liquid crystals and cell membranes, Ann. N. Y. Acad. Sci. 137, 745–754.
- Chernomordik, L. V., Kozlov, M. M., Melikyan, G. B., Abidor, I. G., Markin, V. S., Chizmadzhev, Y. A. (1985) The shape of lipid molecules and monolayer membrane fusion, Biochim. Biophys. Acta 812, 643–655.
- Danielli, J. F., Davson, H. (1935) A contribution to the theory of permeability of thin films, J. Cell. Comp. Physiol. 5, 495–508.
- Deisenhofer, J., Epp, O., Miki, K., Huber, R., Michel, H. (1985) Structure of the protein subunits in the photosynthetic reaction centre of Rhodospeudomonas viridis at 3Å resolution, Nature 318, 618–624.
- Dewji, N. N., Singer, S. J. (1997) The seven-transmembrane spanning topography of the Alzheimer disease-related presenilin proteins in the plasma membranes of cultured cells, Proc. Natl. Acad. Sci. USA 94, 14025–14030.
- Dill, K. A. (1990) Dominant forces in protein folding, Biochemistry 29, 7133–7155.
- Drews, J. (2000) Drug discovery: a historical perspective, Science 287, 1960–1964.
- Edidin, M., Weaver, F. (1985) Lateral diffusion of proteins in the membranes of epithelial cells, Stud. Biophys. 110, 77–82.
- Edidin, M., Zagyansky, Y., Lardner, T. J. (1976) Measurement of membrane protein lateral diffusion in single cells, Science 191, 466–468.
- Engelman, D. M., Steitz, T. A., Goldman, A. (1986) Identifying nonpolar transbilayer helices in amino acid sequences of membrane proteins, Annu. Rev. Biophys. Biophys. Chem. 15, 321–353.
- Fergason, J. L., Brown, G. H. (1968) Liquid crystals and living systems, J. Am. Oil Chem. Soc. 45, 120–127.
- Fillingame, R. H., Jiang, W., Dmitriev, O. Y., Jones, P. C. (2000) Structural interpretations of F(0) rotary function in the Escherichia coli F(1)F(0) ATP synthase, Biochim. Biophys. Acta 1458, 387–403.
- Fleming, K. G., Ackerman, A. L., Engelman, D. M. (1997) The effect of point mutations on the free energy of transmembrane α-helix dimerization, J. Mol. Biol. 272, 266–275.
-
Franklin, B.,
Brownrigg, W.,
Farish, M.
(1774)
Of the Stilling of Waves by means of Oil. Extracted from Sundry Letters between Benjamin Franklin, LLD, FRS. William Brownrigg, MD, FRS and the Reverend Mr. Farish,
Philos. Trans. 64,
445–460.
10.1098/rstl.1774.0044 Google Scholar
- Garavito, R. M., Picot, D., Loll, P. J. (1994) Prostaglandin H synthase, Curr. Opin. Struct. Biol. 4, 529–535.
- Gilbert, R. J., Jimenez, J. L., Chen, S., Tickle, I. J., Rossjohn, J., Parker, M., Andrew, P. W., Saibil, H. R. (1999) Two structural transitions in membrane pore formation by pneumolysin, the pore-forming toxin of Streptococcus pneumoniae, Cell 97, 647–655.
- Gorter, E., Grendel, F. (1925) On bimolecular layers of lipoids on the chromocytes of the blood, J. Exp. Medicine 41, 439–443.
- Gromiha, M. M., Majumdar, R., Ponnuswamy, P. K. (1997) Identification of membrane spanning beta strands in bacterial porins, Protein Eng. 10, 497–500.
- Guidotti, G. (1972) The composition of biological membranes, Arch. Intern. Med. 129, 194–201.
- Hakomori, S., Igarashi, Y. (1993) Gangliosides and glycosphingolipids as modulators of cell growth, adhesion, and transmembrane signaling, Adv. Lipid Res. 25, 147–162.
- Hambleton, P. (1992) Clostridium botulinum toxins: a general review of involvement in disease, structure, mode of action and preparation for clinical use, J. Neurol. 239, 16–20.
- Huang, C.-H. (1969) Studies on phosphatidylcholine vesicles. Formation and physical characteristics, Biochemistry 8, 344–352.
- Huang, H. W. (1973) Mobility and diffusion in the plane of cell membrane, J. Theor. Biol. 40, 11–17.
- Hunt, J. F., Earnest, T. N., Bousché, O., Kalghatgi, K., Reilly, K., Horváth, C., Rothschild, K. J., Engelman, D. M. (1997) A biophysical study of integral membrane protein folding, Biochemistry 36, 15156–15176.
- Jacoboni, I., Martelli, P. L., Fariselli, P., De Pinto, V., Casadio, R. (2001) Prediction of the transmembrane regions of beta-barrel membrane proteins with a neural network-based predictor, Protein Sci. 10, 779–787.
- Jayasinghe, S., Hristova, K., White, S. H. (2001) Energetics, stability, and prediction of transmembrane helices, J. Mol. Biol. 312, 927–934.
- Jung, H. (2001) Towards the molecular mechanism of Na(+)/solute symport in prokaryotes, Biochim. Biophys. Acta 1505, 131–143.
- Kaiser, E. T., Kezdy, F. J. (1983) Secondary structures of proteins and peptides in amphiphilic environments (a review), Proc. Natl. Acad. Sci. USA 80, 1137–1143.
- Kiss, J. Z., Muller, D. (2001) Contribution of the neural cell adhesion molecule to neuronal and synaptic plasticity, Rev. Neurosci. 12, 297–310.
- Koga, Y., Nishihara, M., Morii, H., Akagawa-Matsushita, M. (1993) Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses, Microbiol. Rev. 57, 164–182.
- Koshland, D. E., Jr. (1996) The structural basis of negative cooperativity: receptors and enzymes, Curr. Opin. Struct. Biol. 6, 757–761.
- Kyte, J., Doolittle, R. F. (1982) A simple method for displaying the hydropathic character of a protein, J. Mol. Biol. 157, 105–132.
- Ladokhin, A. S., White, S. H. (1999) Folding of amphipathic α-helices on membranes: energetics of helix formation by melittin, J. Mol. Biol. 285, 1363–1369.
- Langmuir, I. (1917) The shapes of group molecules forming the surfaces of liquids, Proc. Natl. Acad. Sci. USA 3, 251–257.
- Lavialle, F., Levin, I. W., Mollay, C. (1980) Interaction of melittin with dimyristoylphosphatidylcholine liposomes. Evidence for boundary lipid by Raman spectroscopy, Biochim. Biophys. Acta 600, 62–71.
- Lemmon, M. A., Flanagan, J. M., Hunt, J. F., Adair, B. D., Bormann, B. J., Dempsey, C. E., Engelman, D. M. (1992a) Glycophorin-A dimerization is driven by specific interactions between transmembrane alpha-helices, J. Biol. Chem. 267, 7683–7689.
- Lemmon, M. A., Flanagan, J. M., Treutlein, H. R., Zhang, J., Engelman, D. M. (1992b) Sequence specificity in the dimerization of transmembrane alpha-helices, Biochemistry 31, 12719–12725.
- Lewis, R. N., Zhang, Y. P., Hodges, R. S., Subczynski, W. K., Kusumi, A., Flach, C.R, Mendelsohn, R., McElhaney, R. N. (2001) A polyalanine-based peptide cannot form a stable transmembrane alpha-helix in fully hydrated phospholipid bilayers, Biochemistry 40, 12103–12111.
- Liu, L. P., Deber, C. M. (1998) Guidelines for membrane protein engineering derived from de novo designed model peptides, Biopolymers 47, 41–62.
-
Lord Rayleigh
(1890)
Measurements of the Amount of Oil Necessary in Order to Check the Motions of Camphor upon Water,
Proc. R. Soc. Lond. 47,
364–367.
10.1098/rspl.1889.0099 Google Scholar
- Luecke, H., Richter, H. T., Lanyi, J. K. (1998) Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution, Science 280, 1934–1937.
- MacKenzie, K. R., Prestegard, J. H., Engelman, D. M. (1997) A transmembrane helix dimer: structure and implications, Science 276, 131–133.
- Marti, T. (1998) Refolding of bacteriorhodopsin from expressed polypeptide fragments, J. Biol. Chem. 273, 9312–9322.
- Meyer, H. (1901) Zur theorie der alkolnarkose: Der einfluss wechselnder temperatur sur wirkungsstarke und theilungscoefficient dar narcotica, Naunyn Schmiedebergs Arch. Pharmacol. 46, 388–396.
- Mitchell, P., Moyle, J. (1965) Evidence discriminating between the chemical and the chemiosmotic mechanisms of electron transport phosphorylation, Nature 208, 1205–1206.
- Moll, T. S., Thompson, T. E. (1994) Semisynthetic proteins: model systems for the study of the insertion of hydrophobic peptides into preformed lipid bilayers, Biochemistry 33, 15469–15482.
- Molloy, M. P., Herbert, B. R., Slade, M. B., Rabilloud, T., Nouwens, A. S., Williams, K. L., Gooley, A. A. (2000) Proteomic analysis of the Escherichia coli outer membrane, Eur. J. Biochem. 267, 2871–2881.
- Okada, T., Palczewski, K. (2001) Crystal structure of rhodopsin: implications for vision and beyond, Curr. Opin. Struct. Biol. 11, 420–426.
- Overton, E. (1901) Studien uber die Narkose, Jena: Gustav Fischer.
- Pagano, R., Thompson, T. E. (1968) Spherical lipid bilayer membranes: electrical and isotopic studies of ion permeability, J. Mol. Biol. 38, 41–57.
- Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Le Trong, I., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., Miyano, M. (2000) Crystal structure of rhodopsin: a G protein-coupled receptor, Science 289, 739–745.
-
Pautsch, A.,
Vogt, J.,
Model, K.,
Siebold, C.,
Schulz, G. E.
(1999)
Strategy for membrane protein crystallization exemplified with OmpA and OmpX,
Proteins 34. 167–172.
10.1002/(SICI)1097-0134(19990201)34:2<167::AID-PROT2>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H., Liddington, R. C. (1997) Crystal structure of the anthrax toxin protective antigen, Nature 385, 833–838.
- Picot, D., Loll, P. J., Garavito, R. M. (1994) The x-ray crystal structure of the membrane protein prostaglandin H2 synthase-1, Nature 367, 243–249.
-
Pockels, A.
(1891)
Surface tension,
Nature 43,
437–441.
10.1038/043437c0 Google Scholar
- Privalov, P. L., Gill, S. J. (1988) Stability of protein structure and hydrophobic interaction, Adv. Protein Chem. 39, 191–234.
- Robertson, J. D. (1957) New observations on the ultrastructure of the membranes of frog peripheral nerve fibers, J. Biophys. Biochem. Cytol. 3, 1043–1047.
- Rossjohn, J., Gilbert, R. J., Crane, D., Morgan, P. J., Mitchell, T. J., Rowe, A. J., Andrew, P. W., Paton, J. C., Tweten, R. K., Parker, M. W. (1998) The molecular mechanism of pneumolysin, a virulence factor from Streptococcus pneumoniae, J. Mol. Biol. 284, 449–461.
- Sansom, M. S. P., Kerr, I. D. (1995) Transbilayer pores formed by β-barrels: molecular modeling of pore structures and properties, Biophys. J. 69, 1334–1343.
- Schirmer, T., Cowan, S. W. (1993) Prediction of membrane-spanning β-strands and its application to maltoporin, Protein Sci. 2, 1361–1363.
- Schulte, T. H., Marchesi, V. T. (1978) Self-association of human erythrocyte glycophorin A: appearance of low mobility bands on sodium dodecyl sulfate gels, Biochim. Biophys. Acta 508, 425–430.
- Schulz, G. E. (2000) β-Barrel membrane proteins, Curr. Opin. Struct. Biol. 10, 443–447.
- Segre, D., Ben Eli, D., Deamer, D. W., Lancet, D. (2001) The lipid world, Orig. Life Evol. Biosph. 31, 119–145.
- Selkoe, D. J. (2001) Presenilin, Notch, and the genesis and treatment of Alzheimer's disease, Proc. Natl. Acad. Sci. USA 98, 11039–11041.
- Seshadri, K., Garemyr, R., Wallin, E., von Heijne, G., Elofsson, A. (1998) Architecture of beta-barrel membrane proteins: analysis of trimeric porins, Protein Sci. 7, 2026–2032.
- Shatursky, O., Heuck, A. P., Shepard, L. A., Rossjohn, J., Parker, M. W., Johnson, A. E., Tweten, R. K. (1999) The mechanism of membrane insertion for a cholesterol-dependent cytolysin: a novel paradigm for pore-forming toxins, Cell 99, 293–299.
- Singer, S. J., Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes, Science 175, 720–731.
- Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H., Gouaux, J. E. (1996) Structure of staphylococcal α-hemolysin, a heptameric transmembrane pore, Science 274, 1859–1866.
- Sturtevant, J. M. (1977) Heat capacity and entropy changes in processes involving proteins, Proc. Natl. Acad. Sci USA 74, 2236–2240.
- Tanford, C. (1980) The Hydrophobic Effect: Formation of Micelles and Biological Membranes, New York: John Wiley & Sons.
- Tocanne, J. F., Dupou-Cezanne, L., Lopez, A. (1994) Lateral diffusion of lipids in model and natural membranes, Prog. Lipid Res. 33, 203–237.
- Tolner, B., Poolman, B., Konings, W. N. (1997) Adaptation of microorganisms and their transport systems to high temperatures, Comp. Biochem. Physiol. A Physiol. 118, 423–428.
- Toyoshima, C., Nakasako, M., Nomura, H., Ogawa, H. (2000) Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution, Nature 405, 647–655.
- Treutlein, H. R., Lemmon, M. A., Engelman, D. M., Brünger, A. T. (1992) The glycophorin A transmembrane domain dimer: sequence-specific propensity for a right-handed supercoil of helices, Biochemistry 31, 12726–12733.
- Van Gorkom, L. C. M., Horvath, L. I., Hemminga, M. A., Sternberg, B., Watts, A. (1990) Identification of trapped and boundary lipid binding sites in M13 coat protein lipid complexes by deuterium NMR spectroscopy, Biochemistry 29, 3828–3834.
- Wallin, E., von Heijne, G. (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms, Protein Sci. 7, 1029–1038.
- Watts, A. (1995) Bacteriorhodopsin: the mechanism of 2D-array formation and the structure of retinal in the protein, Biophys. Chem. 55, 137–151.
- White, S. H., Wimley, W. C. (1994) Peptides in lipid bilayers: structural and thermodynamic basis for partitioning and folding, Curr. Opin. Struct. Biol. 4, 79–86.
- White, S. H., Wimley, W. C. (1998) Hydrophobic interactions of peptides with membrane interfaces, Biochim. Biophys. Acta 1376, 339–352.
- White, S. H., Wimley, W. C. (1999) Membrane protein folding and stability: physical principles, Annu. Rev. Biophys. Biomol. Struct. 28, 319–365.
- White, S. H., Wimley, W. C., Selsted, M. E. (1995) Structure, function, and membrane integration of defensins, Curr. Opin. Struct. Biol. 5, 521–527.
- Wiener, M. C., King, G. I., White, S. H. (1991) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. I. Scaling of neutron data and the distribution of double-bonds and water, Biophys J. 60, 568–576.
- Wiener, M. C., White, S. H. (1992a) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. II. Distribution and packing of terminal methyl groups, Biophys. J. 61, 428–433.
- Wiener, M. C., White, S. H. (1992b) Structure of a fluid dioleoylphosphatidylcholine bilayer determined by joint refinement of x-ray and neutron diffraction data. III. Complete structure, Biophys. J. 61, 434–447.
- Wieprecht, T., Apostolov, O., Beyermann, M., Seelig, J. (1999) Thermodynamics of the alpha-helix-coil transition of amphipathic peptides in a membrane environment: implications for the peptide-membrane binding equilibrium, J. Mol. Biol. 294, 785–794.
- Wieslander, A., Christiansson, A., Rilfors, L., Lindblom, G. (1980) Lipid bilayer stability in membranes. Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape, Biochemistry 19, 3650–3655.
- Wimley, W. C. (2002) Toward genomic identification of beta-barrel membrane proteins: composition and architecture of known structures, Protein Sci. 11, 301–312.
- Wimley, W. C., Creamer, T. P., White, S. H. (1996) Solvation energies of amino acid sidechains and backbone in a family of host-guest pentapeptides, Biochemistry 35, 5109–5124.
- Wimley, W. C., White, S. H. (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces, Nature Struct. Biol. 3, 842–848.
- Zhang, Y.-P., Lewis, R. N. A. H., Henry, G. D., Sykes, B. D., Hodges, R. S., McElhaney, R. N. (1995a) Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 1. Studies of the conformation, intrabilayer orientation, and amide hydrogen exchangeability of Ac-K2-(LA)12-K2-amide, Biochemistry 34, 2348–2361.
- Zhang, Y.-P., Lewis, R. N. A. H., Hodges, R. S., McElhaney, R. N. (1995b) Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 2. Differential scanning calorimetric and FTIR spectroscopic studies of the interaction of Ac-K2-(LA)12-K2-amide with phosphatidylcholine bilayers, Biochemistry 34, 2362–2371.
Biopolymers Online: Biology • Chemistry • Biotechnology • Applications
Browse other articles of this reference work: