Biodegradation of Humic Substances
PD Dr. habil Matthias Kästner
- [email protected]
- +49-3412352746 | Fax: +49-3412352492
Center for Environmental Research Leipzig-Halle (UFZ), Department of Remediation Research, Permoserstraße 15, Leipzig, Germany, 04318
Search for more papers by this authorDr. habil Martin Hofrichter
- [email protected]
- +358-919159321 | Fax: +358-919159322
University of Helsinki, Department of Applied Chemistry and Microbiology, Viikki Biocenter, P. O. Box 56, University of Finland, Finland, 00014
Search for more papers by this authorPD Dr. habil Matthias Kästner
- [email protected]
- +49-3412352746 | Fax: +49-3412352492
Center for Environmental Research Leipzig-Halle (UFZ), Department of Remediation Research, Permoserstraße 15, Leipzig, Germany, 04318
Search for more papers by this authorDr. habil Martin Hofrichter
- [email protected]
- +358-919159321 | Fax: +358-919159322
University of Helsinki, Department of Applied Chemistry and Microbiology, Viikki Biocenter, P. O. Box 56, University of Finland, Finland, 00014
Search for more papers by this authorAbstract
- Introduction
- Genesis and Stability of Humic Substances
- General Aspects of the Degradation of HS
- Aerobic Degradation of HS
- Methods to Estimate Microbial Degradation of HS
- Bacteria
- Actinomycetes
- Other Heterotrophic Bacteria
- Fungi
- Microfungi
- Basidiomycetous Fungi
- Decomposition by Isolated Enzymes
- Anaerobic Transformation of HS
- Outlook and Perspectives
References
- Adhi, T. P., Korus, R. A., Crawford, D. L. (1989) Production of major extracellular enzymes during lignocellulose degradation by two streptomycetes in agitated submerged culture, Appl. Environ. Microbiol. 55, 1165–1168.
- Aiken, G. R. (1985) Humic Substances in Soil Sediment and Water, New York: John Wiley & Sons.
- Alexander, M. (1977) Introduction into Soil Microbiology, New York: John Wiley & Sons.
- Atlas, R. M., Bartha, R. (1997) Microbial Ecology, Fundamentals and Applications, 4th edn. Redwood City, CA, USA: The Benjamin/Cummings Publishing Company.
- Behmel, P. (1988) Die Sorption von Huminsäuren durch Bakterienzellwände, in: Organische Inhaltsstoffe des Bodens. Denkschrift zum 65. Geburtstag von Wolfgang Ziechman, Universität Göttingen, pp. 1–13.
- Benz, M., Schink, B., Brune, A. (1998) Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria, Appl. Environ. Microbiol. 64, 4507–4512.
- Bhardwaj, K. K. R., Gaur, A. C. (1971) Isolation and characterization of some humic acid decomposing bacteria and fungi from soil, Zbl. Bakt. II 126, 307–312.
- Blondeau, R. (1986) Comparison of soil humic and fulvic acids of similar molecular weight, Org. Geochem. 9, 47–50.
- Blondeau, R. (1987) Generation of hydroxyl analogous radicals by Arthrobacter sp., FEMS Microbiol. Lett. 41, 263–267.
- Blondeau, R. (1989) Biodegradation of natural and synthetic humic acids by the white-rot fungus Phanerochaete chrysosporium, Appl. Environ. Microbiol. 55, 1282–1285.
- Bollag, J.-M. (1992) Decontaminating soil with enzymes, Environ. Sci. Technol. 10, 1876–1881.
- Bollag, J.-M., Myers, C., Pal, S., Huang, P. M. (1995) The role of abiotic and biotic catalysts in the transformation of phenolic compounds, in: Environmental Impact of Soil Component Interactions ( P. M. Huang, J. Berthelin, J.-M. Bollag, W. B. McGhill, A. L. Page, Eds.), pp. 299–309. Boca Raton, FL: CRC Lewis.
- Bradley, P. M., Chapelle, F. H., Lovley, D. R. (1998) Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene, Appl. Environ. Microbiol. 64, 3102–3105.
- Burke, N. S., Crawford, D. L. (1998) Use of azo dye ligand chromatography for the partial purification of a novel extracellular peroxidase from Streptomyces viridosporus T7A, Appl. Microbiol. Biotechnol. 49, 523–530.
- Butler, E. C., Hayes, K. F. (1998) Effects of solution composition and pH on the reductive dechlorination of hexachloroethane by iron sulfide, Environ. Sci. Technol. 32, 1276–1284.
- Cervantes, F. J., van der Velde, S., Lettinga, G., Field, J. A. (2000) Quinones as terminal electron acceptors in anaerobic microbial oxidation of phenolic compounds, Biodegradation (in press).
- Chatterjee, R., Dutta, A., Banerjee, R., Bhattacharyya, B. C. (1996) Production of tannase by solid-state fermentation, Bioprocess Eng. 14, 159–162.
- Chefetz, B., Chen, Y., Hadar, Y. (1998) Purification of laccase from Chaetomium thermophilum and its role in humification, Appl. Environ. Microbiol. 64, 3175–3179.
- Chin, Y. P., Aiken, G., O'Loughlin, E. (1994) Molecular weight, polydispersity, and spectroscopic properties of aquatic humic substances, Environ. Sci. Technol. 28, 1853–1858.
-
Claus, H.,
Filip, Z.
(1997)
The evidence of a laccase-like enzyme activity in a Bacillus sphaericus strain,
Microbial Res. 152,
159–166.
10.1016/S0944-5013(97)80014-6 Google Scholar
- Claus, H., Filip, Z. (1998) Degradation and transformation of aquatic humic substances by laccase-producing fungi Cladosporium clarosporoides and Polyporus versicolor, Acta Hydrochim. Hydrobiol. 26, 180–185.
- Coates, J. D., Ellis, D. J., Blunt-Harris, E. L., Gaw, C. V., Rodem, E. E., Lovley, D. R. (1998) Recovery of humic-reducing bacteria from a diversity of environments, Appl. Environ. Microbiol. 64, 1504–1509.
- Crawford, D. L., Pometto III, A. L., Crawford, R. L. (1983) Lignin degradation by Streptomyces viridosporus: isolation and characterization of a new polymeric lignin degradation intermediate, Appl. Environ. Microbiol. 45, 898–904.
- Cundliffe, E. (2000) Antibiotic biosynthesis; some thoughts on ‘why?’ and ‘how?’, in: The Ribosome: Structure, Function, Antibiotics and Cellular Interactions ( R.A. Garrett, S. R. Douthwaite, A. Liljas, A.T. Matheson, P.B. Moore, H.F. Noller, Eds.), pp. 409–417. Washington, D. C.: American Society for Microbiology.
- Curtis, G. P., Reinhard, M. (1994) Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfonate and humic acid, Environ. Sci. Technol. 28, 2393–2401.
- Dari, K., Béchet, M., Blondeau, R. (1995) Isolation of soil Streptomyces strains capable of degrading humic acids and analysis of their peroxidase activity, FEMS Microbiol. Ecol. 16, 115–122.
- Dawel, G., Kästner, M., Michels, J., Poppitz, W., Günther, W., Fritsche, W. (1997) Structure of a laccase-mediated product of coupling of 2,4-diamino-6-nitrotoluene and guiacol, a model for coupling of 2,4„6-trinitrotoluene metabolites to a humic organic matter, Appl. Environ. Microbiol. 63, 2560–2565.
- Dedeyan, B., Klonowska, A., Tagger, S., Tron, T., Iacazio, G., Gil, G., Le Petit, J. (2000) Biochemical and molecular characterization of a laccase from Marasmius quercophilus, Appl. Environ. Microbiol. 66, 925–929.
- Dehorter, B., Blondeau, R. (1992) Extracellular enzyme activities during humic acid degradation by the white rot fungi Phanerochaete chrysosporium and Trametes versicolor, FEMS Microbiol. Lett. 94, 209–216.
- Dehorter, B., Blondeau, R. (1993) Isolation of an extracellular Mn-dependent enzyme mineralizing melanoidins from the white rot fungus Trametes versicolor, FEMS Microbiol. Lett. 109, 117–122.
- Dehorter, B., Kontchou, C. Y., Blondeau, R. (1992) 13C-NMR spectroscopic analysis of soil humic acids recovered after incubation with some white rot fungi and actinomycetes, Soil Biol. Biochem. 24, 667–673.
- Dunnivant, F. M., Schwarzenbach, R. (1992) Reduction of substituted nitrobenzenes in aqueous solutions containing natural organic matter, Environ. Sci. Technol. 26, 2133–2141.
- Eggert, C., Temp, U., Dean, J. F. D., Eriksson, K.-E. L. (1996) A fungal metabolite mediates degradation of non-phenolic lignin structures and synthetic lignin by laccase, FEBS Lett. 391, 144–148.
- Engebretson, R. R., Wandruszka, R. (1994) Microorganization of dissolved humic acids, Environ. Sci. Technol., 28, 1934–1941.
- Field, J. A., Cervantes, F., van der Zee, F., Lettinga, G. (1999) Role of quinones in the biodegradation of priority pollutants: a review, Water Sci. Technol. 42, 215–222.
-
Filip, Z.,
Claus, H.,
Dippell, G.
(1998)
Abbau von Huminstoffen durch Bodenmikroorganismen – eine Übersicht,
Z. Pflanzenernähr. Bodenk. 168,
605–612.
10.1002/jpln.1998.3581610602 Google Scholar
- Flaig, W., Schmidt, H. L. (1957) Über die Einwirkung von Huminsäuren auf das Wachstum einiger Penicilliumarten, Arch. Mikrobiol. 27, 1–32.
- Francis, C. A., Obraztsova, A. Y., Tebo, B. M. (2000) Dissimilatory metal reduction by the facultative anaerobe Pantoea agglomerans SP1, Appl. Environ. Microbiol. 66, 543–548.
- Fritsche, W. (1990) Mikrobiologie, Jena: Gustav Fischer Verlag.
- Fritsche, W., Hofrichter, M. (2000) Aerobic degradation by microorganisms, in: Biotechnology, 2nd edition, Vol. 11b, Environmental processes II (Rehm, H.-J., Reed, G., Pühler, A., Stadler, P., Eds.), pp. 145–167. Weinheim: Wiley-VCH.
- Führ, F., Kloskowski, R., Burauel, P. W. (1985) Bedeutung der gebundenen Rückstände, in: Pflanzenschutzmittel im Boden (Bundesminister für Ernährung, Landwirtschaft und Forsten, Hrsg.), pp. 106–116, Z. Agrarpolitik Landwirtschaft 198. Hamburg: Sonderheft. Paul Parey.
- Geller, A. (1983) Growth of bacteria in inorganic medium different levels of airborne organic substances, Appl. Environ. Microbiol. 46, 1258–1262.
- Gianfreda, L., Violante, A. (1995) Activity, Stability, and kinetic properties of enzymes immobilized on clay minerals and organomineral complexes, in: Environmental Impact of Soil Component Interactions, Vol. I ( P. M. Huang, J. Berthelin, J.-M. Bollag, W. B. McGill, A. L. Page, Eds.), pp. 201–209. Boca Raton, FL: CRC Lewis.
- Gierer, J. (1997) Formation and involvement of superoxide and hydroxyl radicals in TCF bleaching processes: a review, Holzforschung 51, 34–46.
- Gordienko, S. A., Kunz, F. (1984) Role of microorganisms in humic acid transformation (in Russian), Ekologija 2, 57–63.
- Gramss, G., Ziegenhagen, D., Sorge, S. (1998) Degradation of soil humic extract by wood- and soil-associated fungi, bacteria, and commercial enzymes, Microbial Ecol. 37, 140–151.
- Gravesen, S., Frisvad, J. C., Samson, R. A. (1994) Microfungi, Copenhagen: Munksgard.
- Haider, K. (1996) Biochemie des Bodens, Stuttgart: Enke.
- Haider, K. (1998a) Microbe-soil-organic contaminant interactions, in: Bioremediation of Contaminated Soils, pp. 33–51. Agronomy Monographs No. 37. Madison, WI: ASA, CSSA, SSSA.
- Haider, K. (1998b) Physical and chemical stabilisation mechanisms of RSOM, Mittl. Dt. Bodenkundl. Gesell. 87, 119–132.
- Haider, K. (1999) Von der toten organischen Substanz zum Humus, Z. Pflanzenern. Bodenk. 162, 363–371.
- Haider, K. M., Martin, J. P. (1988) Mineralization of 14C-labelled humic acids and humic-acid bound 14C-xenobiotics by Phanerochaete chrysosporium, Soil Biol. Biochem. 20, 425–429.
- Haider, K. M., Mosier, A., Heinemeyer, O. (1987) Plant impact on N-utilization from fertilizer and crop residues and on organic N and C mineralization, Soil Sci. Soc. Am. 51, 97–101.
- Hatakka, A. (1994) Lignin-modifying enzymes from selected white-rot fungi: production and role in lignin degradation, FEMS Microbiol. Rev. 13, 125–135.
- Hayakawa, M., Nonomura, H. (1987) Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes, J. Ferment. Technol. 65, 501–509.
- Hayes, M. H. B., MacCarthy, P., Malcom, R. L., Swift, R. S. (1989) Humic Substances II – In Search of Structure, Chichester, UK: John Wiley & Sons.
- Hedges, J. I. (1988) Polymerisation of humic substances in natural environment, in: Humic Substances and their Role in the Environment ( F. H. Frimmel, R. F. Christman, Eds.), pp. 45–48. Chichester, UK: John Wiley & Sons.
- Heinzkill, M., Bech, L., Halkier, T., Schneider, P., Anke, T. (1998) Characterization of laccases and peroxidases from wood-rotting fungi (family Coprinaceae), Appl. Environ. Microbiol. 64, 1601–1606.
- Hintikka, V. (1970) Studies on white-rot humus formed by higher fungi in forest soils, Commun. Inst. Forestal. Fenniae 67(7), 1–68.
- Hintikka, V. (1982) The colonisation of litter and wood by basidiomycetes in Finnish forests, in: Decomposer Basidiomycetes ( J. C. Frankland, J. N. Hedger, M. J. Swift, Eds.), pp. 227–239. Cambridge, UK: Cambridge University Press.
- Hofrichter, M., Fritsche, W. (1996a) Depolymerization of low-rank coal by extracellular fungal enzyme systems. I. Screening for low-rank coal depolymerizing activities, Appl. Microbiol. Biotechnol. 46, 220–225.
- Hofrichter, M., Fritsche, W. (1996b) Abbau aromatischer Kohlenwasserstoffe durch den Schimmelpilz Penicillium frequentans Bi 7/2, Wasser Abwasser 137, 199–204.
- Hofrichter, M., Fritsche, W. (1997) Depolymerization of low-rank coal by extracellular fungal enzyme systems. III. In vitro depolymerization of coal humic acids by a crude preparation of manganese peroxidase from the white-rot fungus Nematoloma frowardii b19, Appl. Microbiol. Biotechnol. 47, 566–571.
- Hofrichter, M., Scheibner, K., Schneegaß, I., Ziegenhagen, D., Fritsche, W. (1998a) Mineralization of synthetic humic substances by manganese peroxidase from the white-rot fungus Nematoloma frowardii, Appl. Microbiol. Biotechnol. 49, 584–588.
- Hofrichter, M., Ziegenhagen, D., Vares, T., Friedrich, M., Jäger, M. G., Fritsche, W., Hatakka, A. (1998b) Oxidative decomposition of malonic acid as basis for the action of manganese peroxidase in the absence of H2O2, FEBS Lett. 434, 362–366.
- Hofrichter, M., Ziegenhagen, D., Sorge, S., Ullrich, R., Bublitz, F., Fritsche, W. (1999) Degradation of lignite (low-rank coal) by ligninolytic basidiomycetes and their manganese peroxidase system, Appl. Microbiol. Biotechnol. 52, 78–84.
- Hofstetter, T. B., Heijman, C. G., Haderlein, S. B., Holliger, C., Schwarzenbach, R. P. (1999) Complete reduction of TNT and other (Poly)nitroaromatic compounds under iron-reducing subsurface conditions, Environ. Sci. Technol. 33, 1479–1487.
- Hölker, U., Fakoussa, R. M., Höfer, M. (1995) Growth substrates control the ability of Fusarium oxysporum to solubilize low-rank coal, Appl. Microbiol. Biotechnol. 44, 351–355.
- Huber, M., Lerch, K. (1987) The influence of copper on the induction of tyrosinase and laccase in Neurospora crassa, FEBS Lett. 219, 335–338.
- Hurst, H. M., Burges, A., Latter, P. (1963) Some aspects of the biochemistry of humic acid decomposition by fungi, Phytochemistry 1, 227–231.
- Jahnel, J. B., Schmiedel, U., Abbt-Braun, G., Frimmel, F. H. (1993) Anwendung einer enzymatischen Methode zur Charakterisierung von Huminstoffen, Acta Hydrochim. Hydrobiol. 21, 43–50.
- Kästner, M. (2000) . The ‘humification’ process or the formation of refractory soil organic matter, in: Biotechnology, 2nd edition, Vol. 11b, Environmental Processes II (Rehm, H.-J., Reed, G., Pühler, A., Stadler, P., Eds.), pp. 145–167. Weinheim: Wiley-VCH.
- Keck, A., Klein, J, Kudlich, M., Stolz, A., Knackmuss, H., Mattes, R. (1997) Reduction of azo dyes by redox mediators originating in the naphthalenesulfonic acid degradation pathway of Sphingomonas sp. strain BN6, Appl. Environ. Microbiol. 63, 3684–3690.
- Kerem, Z., Jensen, K. A., Hammel, K. E. (1999) Biodegradative mechanism of the brown rot basidiomycete Gloeophyllum trabeum: evidence for an extracellular hydroquinone-driven Fenton reaction, FEBS Lett. 446, 49–54.
- Khandelwal, K. C., Gaur, A. C. (1980) Degradation of humic acids, extracted from manure and soil by some streptomycetes and fungi, Zbl. Bakt. II 135, 119–122.
- Kieft, T. L., Frederickson, J. K., Onstoot, T. C., et al. (1999) Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate, Appl. Environ. Microbiol. 65, 1214–1221.
- Kontchou, C. Y., Blondeau, R. (1990) Effect of heterotrophic bacteria on different humic substances in mixed batch cultures, Can. J. Soil Sci. 70, 51–59.
- Kontchou, C. Y., Blondeau, R. (1992) Biodegradation of soil humic acids by Streptomyces viridosporus, Can. J. Microbiol. 38, 203–208.
- Kudlich, M., Keck, A., Klein, J., Stolz, A. (1997) Localization of the enzyme system involved in anaerobic reduction of azo dyes by Sphingomonas sp. strain BN6 and effect of artificial redox mediators on the rate of azo dye reduction, Appl. Environ. Microbiol. 63, 3691–3694.
- Kurtz, M. B., Champe, S. P. (1982) Purification and characterization of the conidial laccase of Aspergillus nidulans, J. Bacteriol. 151, 1338–1345.
- Larson, R., A., Weber, E. J. (1994) Reaction Mechanisms in Environmental Organic Chemistry, Boca Raton, FL: Lewis Publishers.
- Lequart, C., Kurek, B., Debeire, P., Monties, B. (1998) MnO2 and oxalate: an abiotic route for the oxidation of aromatic components of wheat straw, J. Agric. Food Chem. 46, 3868–3874.
- Linhares, A. A., Linhares, L. F., Coelho, R. R. (1998) Neutral sugars in melanins synthesized by actinomycetes from Brazilian soils, Biol. Fertil. Soils 27, 162–267.
- Lovley, D. R., Blunt-Harris, E. L. (1999) Role of humic-bound iron as an electron transfer agent in dissimilatory Fe(III) reduction, Appl. Environ. Microbiol. 65, 4252–4254.
- Lovley, D. R., Woodward, J. C., Chapelle, F. H., (1996a) Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms, Appl. Environ. Microbiol. 62, 288–291.
- Lovley, D. R., Coates, J. D., Blunt-Harris, E. L., Phillips, E. J. P., Woodward, J. C. (1996b) Humic substances as electron acceptors for microbial respiration, Nature 382, 445–448.
- Lovley, D. R., Fraga, J. L., Blunt-Harris, E. L., Hayes, L. A., Phillips, E. J. P., Coates, J. D. (1998) Humic substances as a mediator for microbially catalyzed metal reduction, Acta Hydrochim. Hydrobiol. 26, 152–157.
- Lovley, D. R., Fraga, J. L., Coates, J. D., Blunt-Harris, E. L. (1999) Humics as an electron donor for anaerobic respiration, Environ. Microbiol. 1, 89–98.
- Machuca, A., Durán, N. (1996) Optimization of some parameters influencing Thermoascus auranticus growth: effects of lignin-related compounds, J. Industr. Microbiol. 16, 224–229.
- Macor, M. (1979) Decomposition of humic acids from peat soil by micromycetes, Acta F.R.N. Univ. Comen. Microbiologia 7, 1–22.
- Malcolm, R. L., McCarthy, P. L. (1986) . Limitations in the use of commercial humic acids in water and soil research, Environ. Sci. Technol. 20, 904–911.
- Mangler, J. E., Tate III, R. L. (1982) Source and role of peroxidase in soil organic matter oxidation in Pahokee muck, Soil Sci. 134, 226–232.
- Marthur, S. P. (1966) A microbiological approach to the problem of soil humic acid structures, Nature 212, 646–647.
- Marthur, S. P. (1969) Microbial use of podzol Bh fulvic acids, Can. J. Microbiol. 15, 677–680.
- Marthur, S. P., Paul, E. A. (1967) Microbial utilization of soil humic acids, Can. J. Microbiol. 13, 573–580.
- Martin, J. P., Haider, K. (1971) Microbial activity in relation to soil humus formation, Soil Sci. 111, 54–63.
- Martin, J. P., Haider, K. (1979) Biodegradation of 14C-labeled model and cornstalk lignins, phenols, model phenolase humic polymer, and fungal melanins as influenced by a readily available carbon source and soil, Appl. Environ. Microbiol. 38, 283–289.
- McCarthy, A. J., Broda, P. (1984) Screening for lignin-degrading actinomycetes and characterization of their activity against [14C]lignin-labelled wheat lignocellulose, J. Gen. Microbiol. 130, 2905–2913.
- Mercer, D. K., Iqbal, M., Miller, P. G. G., McCarthy, A. J. (1996) Screening actinomycetes for extracellular peroxidase activity, Appl. Environ. Microbiol. 62, 2186–2190.
- Mishra, B., Srivastava, L. L. (1986) Degradation of humic acids of a forest soil by some fungal isolates, Plant Soil 96, 413–416.
- Mishustin, E. N., Nikitin, D. E. (1961) Susceptibility of humic acids to the soil microflora (in Russian), Mikrobiologija 30, 841–848.
- Oades, J. M. (1993) The role of biology in the formation, stabilization and degradation of soil structure, Geoderma 56, 377–400.
- Parton, W. J., Schimel, D. S., Cole, C. V., Ojima, D. S. (1987) Analysis of factors controlling soil organic matter level in Great Plains Grasslands, Soil Sci. Soc. Am. J. 51, 1173–1179.
-
Paul, E. A.,
Clark, F. E.
(1989)
Soil Microbiology and Biochemistry, San Diego: Academic Press.
10.1016/B978-0-12-546805-3.50004-7 Google Scholar
-
Paul, E. A.,
Marthur, S. P.
(1967)
Cleavage of humic acids by Penicillium frequentans,
Plant Soil Sci. 7,
297–299.
10.1007/BF01373399 Google Scholar
- Pauli, F. W. (1967) Soil Fertility, London: Adam Hilger.
- Perlinger, J. A., Angst, W., Schwarzenbach, R. P. (1996) Kinetics of reduction of hexachloroethane by juglone in solution containing hydrogen sulfide, Environ. Sci. Technol. 30, 3408–3417.
- Ramachandra, M., Crawford, D. L., Hertel, G. (1988) Characterization of an extracellular lignin peroxidase of the ligninolytic actinomycete Streptomyces viridosporus, Appl. Environ. Microbiol. 54, 3057–3063.
- Regalado, V., Perestelo, F., Rodríguez, A., Carnicero, A., Sosa, F. J., De la Fuente, G., Falcón, M. A. (1999) Activated oxygen species and two extracellular enzymes: laccase and aryl-alcohol oxidase, novel for the lignin-degrading fungus Fusarium proliferatum, Appl. Microbiol. Biotechnol. 51, 388–390.
- Rieger, P. G., Knackmuss, H.-J. (1995) Basic knowledge and perspectives on biodegradation of 2,4,6,-trinitrotoluene and related nitroaromatic compounds in contaminated soil, in: Biodegradation of Nitroaromatic Compounds ( J. C. Spain, Ed.), pp. 1–18. New York: Plenum Press.
- Rodríguez, A., Falcón, M. A., Carnicero, A., Perestelo, F., De la Fuente, G., Trojanowski, J. (1996) Laccase activities of Penicillium chrysogenum in relation to lignin degradation, Appl. Microbiol. Biotechnol. 45, 399–403.
- Ruocco, J. J., Barton, L. L. (1978) Energy-driven uptake of humaic acids by Aspergillus niger, Can. J. Microbiol. 24, 533–536.
- Rüttimann-Johnson, C., Lamar, R. T. (1996) Polymerization of pentachlorophenol and ferulic acid by fungal lignin-degrading enzymes, Appl. Environ. Microbiol. 62, 3890–3893.
- Scheel, T., Hölker, U., Ludwig, S., Höfer, M. (1999) Evidence for and expression of a laccase gene in three basidiomycetes degrading humic acids, Appl. Microbiol. Biotechnol. 52, 66–69.
- Scheel, T., Hölker, U., Ludwig, S., Höfer, M. (2000) Differential expression of manganese peroxidase and laccase in white-rot fungi in the presence of manganese or aromatic compounds, Appl. Microbiol. Biotechnol., in press.
- Scheffer, F., Ulrich, B. (1960) Humus und Humusdüngung – Lehrbuch der Agrikulturchemie und Bodenkunde, Band III. Stuttgart: Enke.
- Schimpf, M. E., Wahlund, K. G. (1997) Asymmetrical flow field-flow fractionation as a method to study the behaviour of humic acids in solution, J. Microcolumn Separations 9, 535–543.
- Schlosser, D., Fahr, K., Karl, W., Wetzstein, H. G. (2000) Hydroxylated metabolites of 2,4-dichlorophenol imply a Fenton-type reaction in Gloeophyllum striatum, Appl. Environ. Microbiol. 66, 2479–2483.
- Schneegaß, I., Hofrichter, M., Scheibner, K., Fritsche, W. (1997) Purification of the main manganese peroxidase isoenzyme MnP2 from the white-rot fungus Nematoloma frowardii b19, Appl. Microbiol. Biotechnol. 48, 602–605.
- Schwarzenbach, R. P., Stierli, R., Lanz, K., Zeyer, J., 1990. Quinone and iron porphyrin mediated reduction of nitroaromatic compounds in homogeneous aqueous solution, Environ. Sci. Technol. 24, 1566–1574.
- Scott, T., McKnight, D. M., Blunt-Harris, E. L., Kolesar, S. E., Lovley, D. R. (1998) Quinone moieties act as electron acceptors in the reduction of humic substances by humus reducing microorganisms, Environ. Sci. Technol. 32, 2984–2989.
- Serban, A., Nissenbaum, A. (1986) Humic acid association with peroxidase and catalase, Soil Biol. Biochem. 18, 41–44.
- Shevchenko, S. M., Bailey, G. W. (1996) Life after death: lignin-humic relationships reexamined, Crit. Rev. Environ. Sci. Technol. 26, 95–153.
- Shindo, H. 1994. Significance of Mn(IV) and Fe(III) oxides in the synthesis of humic acids from phenolic compounds, in: Humic Substances in the Global Environment and Implications on Human Health ( N. Senesi, T. M. Miano, Eds.), pp. 361–366. Amsterdam: Elsevier Science B.V.
- Steffen, K. T., Hofrichter, M., Hatakka, A. (2000) Mineralization of 14C-labelled synthetic lignin and ligninolytic enzyme activities of litter-decomposing basidiomycetous fungi, Appl. Microbiol. Biotechnol., in press.
- Stevenson, F.J. (1994) Humus Chemistry: Genesis, Composition, Reactions, 2nd edn. New York: John Wiley & Sons.
- Stone, A. T., Morgan, J. J. (1984) Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. I. Reaction with hydroquinone, Environ. Sci. Technol. 18, 450–456.
- Sunda, W. G., Kieber, D. J. (1994) Oxidation of humic substances by manganese oxides yields low-molecular-weight organic substrates, Nature 367, 62–64.
- Swift, R. S. (1985) Fractionation of soil humic substances, in: Humic Substances in Soil Sediment and Water ( G. R. Aiken, Ed.), pp. 387–409. New York: John Wiley & Sons.
- Thomas, L., Crawford, D. L. (1998) Cloning of a Streptomyces viridosporus T7A lignocellulose catabolism gene cluster encoding peroxidase and endoglucanase and its extracellular expression in Pichia pastoris, Can. J. Microbiol. 44, 364–372.
- Trigo, C., Ball, A. S. (1994) Is the solubilized product from the degradation of lignocellulose by actinomycetes a precursor of humic substances?, Microbiology 140, 3145–3152.
- Trojanowski, J., Haider, K., Hüttermann, A. (1984) Decomposition of 14C-labelled lignin, holocellulose, and lignocellulose by mycorrhizal fungi, Arch. Microbiol. 139, 202–206.
- Tuomela, M., Vikman, M., Hatakka, A., Itävaara, M. (2000) Biodegradation of lignin in a compost environment: a review, Bioresource Technol. 72, 169–183.
- van Veen, J. A., Ladd, J. N., Frissel, M. J., (1984) Modelling C and N turnover through the microbial biomass in soil, Plant Soil 76, 257–274.
- Visser, S. A. (1970) Studies on Aspergillus flavus link and its metabolites. Part VII. Investigation into the optimum conditions for the formation of humic compounds in Aspergillus flavus cultures and some properties of the product formed, W. Afr. J. Biol. Appl. Chem. 13, 3–13.
- von der Kammer, F., Förstner, U. (1998) Natural colloid characterization using flow-field-flow-fractionation followed by multi-detector analysis, Water Sci. Technol., 37, 173–180
- Waksman, S. A. (1932) Humus, Baltimore: Williams & Wilkins.
- Wershaw, R. L. (1989) Application of a membrane model to the sorptive interactions of humic substances, Environ. Health Perspect. 83, 191–203.
- Wershaw, R. L. (1993) Model for humus, Environ. Sci. Technol. 27, 814–816.
- Whelan, G., Sims, R. C., Murarka, I. P. (1995) Interactions between manganese oxides and multiple-ringed aromatic compounds, in: Environmental Impact of Soil Component Interactions , Vol. I.( P. M. Huang, J. Berthelin, J.-M. Bollag, W. B. McGill, A. L. Page, Eds.), pp. 345–361. Boca Raton, FL: CRC Lewis.
- Woelki, G., Friedrich, S., Hanschmann, G., Salzer, R. (1997) HPLC fractionation and structural dynamics of humic acids, Fresenius J. Anal. Chem. 357, 548–552.
- Wunderwald, U., Kreisel, G., Braun, M., Schulz, M., Jäger, C., Hofrichter, M. (2000) Formation and degradation of a synthetic humic acid derived from 3-fluorocatechol, Appl. Microbiol. Biotechnol. 53, 441–446.
- Yamada, H., Adachi, O., Watanabe, M. (1968) Studies on fungal tannase. I. Formation, purification and catalytic properties. of tannase of Aspergillus flavus, Agr. Biol. Chem. 32, 1070–1078.
- Yano, Y., McDowell, W. H., Kinner, N. E. (1998) Quantification of biodegradable dissolved organic carbon in soil solution with flow-through bioreactors, Soil Sci. Soc. Am. J. 62, 1556–1564.
- Ziechmann, W. (1980) Huminstoffe, Weinheim, Germany: Verlag Chemie.
- Ziechmann, W. (1994) Humic Substances, Mannheim: BI-Wissenschaftsverlag.
- Zou, P., Schrempf, H. (2000) The heme-independent manganese-peroxidase activity depends on the presence of the C-terminal domain within the Streptomyces reticuli catalase-peroxidase CpeB, Eur. J. Biochem. 267, 2840–2849.
Citing Literature
Biopolymers Online: Biology • Chemistry • Biotechnology • Applications
Browse other articles of this reference work: