How optimal PMU placement can mitigate cascading outages blackouts?
Corresponding Author
Ebrahim Karimi
Universidad Loyola Andalucía, Seville, Spain
Correspondence
Ebrahim Karimi, Universidad Loyola Andalucía, Seville, Spain.
Email: [email protected]
Search for more papers by this authorAkbar Ebrahimi
Department of Electrical and Computer Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
Search for more papers by this authorMohamad Reza Tavakoli
Department of Electrical and Computer Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
Search for more papers by this authorCorresponding Author
Ebrahim Karimi
Universidad Loyola Andalucía, Seville, Spain
Correspondence
Ebrahim Karimi, Universidad Loyola Andalucía, Seville, Spain.
Email: [email protected]
Search for more papers by this authorAkbar Ebrahimi
Department of Electrical and Computer Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
Search for more papers by this authorMohamad Reza Tavakoli
Department of Electrical and Computer Engineering, Isfahan University of Technology (IUT), Isfahan, Iran
Search for more papers by this authorSummary
The conventional optimal PMU placement (OPP) methods minimize the number of PMUs along with guarantying full observability of the system. However, various OPP schemes with the same number of PMUs obtained for a power system have different performances in emergency conditions. Cascading outages as the major cause of recent large blackouts cancel out full observability of the system and decrease situational awareness. In this paper, the OPA model previously developed to simulate power system blackouts is modified in order to include observability analysis through the progress of the cascading outages. The modified process is performed in turn for a given set of OPP schemes. To rank these schemes, a criterion is proposed as a monetary value using produced data by the modified OPA model. Scalability of the proposed procedure is investigated in two test systems. Simulations show that although considering N-1 criterion in finding optimal PMU schemes decreases the consequences of transmission line cascading outages, it is not financially reasonable and does not lead to better performance of the OPP scheme. In other words, it is better to use OPP schemes in normal condition.
REFERENCES
- 1Kudo N, Perseghini M, Fu GC. Summary for policymakers. Power Grid Complexity. 2006. https://doi.org/10.1017/CBO9781107415324.004; 45.
- 2Carreras BA, Newman DE, Dobson I, Poole AB. Evidence for self-organized criticality in a time series of electric power system blackouts. IEEE Trans Circuits Syst I Regul Pap. 2004; 51(9): 1733-1740. https://doi.org/10.1109/TCSI.2004.834513
- 3Karimi E, Ebrahimi A. Inclusion of blackouts risk in probabilistic transmission expansion planning by a multi-objective framework. IEEE Trans Power Syst. 2015; 30(5): 2810-2817. https://doi.org/10.1109/TPWRS.2014.2370065
- 4Pourbeik P, Kundur PS, Taylor CW. The anatomy of a power grid blackout—root causes and dynamics of recent major blackouts. IEEE Power Energy Mag. 2006; 4(5): 22-29. https://doi.org/10.1109/MPAE.2006.1687814
10.1109/MPAE.2006.1687814 Google Scholar
- 5Andersson G, Donalek P, Farmer R, et al. Causes of the 2003 major grid blackouts in North America and Europe, and recommended means to improve system dynamic performance. IEEE Trans Power Syst. 2005; 20(4): 1922-1928. https://doi.org/10.1109/TPWRS.2005.857942
- 6Papic M, Bell K, Chen Y, et al. Survey of tools for risk assessment of cascading outages. In: 2011 IEEE Power and Energy Society General Meeting. IEEE; 2011: 1-9. https://doi.org/10.1109/PES.2011.6039371
- 7Vaiman M, Bell K, Chen Y, et al. Risk assessment of cascading outages: methodologies and challenges. IEEE Trans Power Syst. 2012; 27(2): 631-641. https://doi.org/10.1109/TPWRS.2011.2177868
- 8Terzija V, Valverde G, Cai D, et al. Wide-area monitoring, protection, and control of future electric power networks. Proc IEEE. 2011; 99(1): 80-93. https://doi.org/10.1109/JPROC.2010.2060450
- 9Nuqui RF, Phadke AG. Phasor measurement unit placement techniques for complete and incomplete observability. IEEE Trans Power Deliv. 2005; 20(4): 2381-2388. https://doi.org/10.1109/TPWRD.2005.855457
- 10Tai X, Marelli D, Rohr E, Fu M. Optimal PMU placement for power system state estimation with random component outages. Int J Electr Power Energy Syst. 2013; 51: 35-42. https://doi.org/10.1016/j.ijepes.2013.02.007
- 11Karlsson D, Hemmingsson M, Lindahl S. Wide area system monitoring and control. IEEE Power Energy Mag. 2004; 2(5): 68-76. https://doi.org/10.1109/MPAE.2004.1338124
10.1109/MPAE.2004.1338124 Google Scholar
- 12Manousakis NM, Korres GN, Georgilakis PS. Taxonomy of PMU placement methodologies. IEEE Trans Power Syst. 2012; 27(2): 1070-1077. https://doi.org/10.1109/TPWRS.2011.2179816
- 13Negash K, Khan B, Yohannes E. Artificial intelligence versus conventional mathematical techniques: a review for optimal placement of phasor measurement units. Technol Econ Smart Grids Sustain Energy. 2016; 1(1): 10. https://doi.org/10.1007/s40866-016-0009-y
10.1007/s40866-016-0009-y Google Scholar
- 14Wang G, Liu C-C, Bhatt N, Farantatos E, Patel M. Observability of nonlinear power system dynamics using synchrophasor data. Int Trans Electr Energy Syst. 2016; 26(5): 952-967. https://doi.org/10.1002/etep.2116
- 15Aminifar F, Fotuhi-Firuzabad M, Shahidehpour M, Safdarian A. Impact of WAMS malfunction on power system reliability assessment. IEEE Trans Smart Grid. 2012; 3(3): 1302-1309. https://doi.org/10.1109/TSG.2012.2183397
- 16Aminifar F, Fotuhi-Firuzabad M, Safdarian A. Optimal PMU placement based on probabilistic cost/benefit analysis. IEEE Trans Power Syst. 2013; 28(1): 566-567. https://doi.org/10.1109/TPWRS.2012.2198312
- 17Rakpenthai C, Premrudeepreechacharn S, Uatrongjit S, Watson NR. An optimal PMU placement method against measurement loss and branch outage. IEEE Trans Power Deliv. 2007; 22(1): 101-107. https://doi.org/10.1109/TPWRD.2006.881425
- 18Ghamsari-Yazdel M, Esmaili M. Reliability-based probabilistic optimal joint placement of PMUs and flow measurements. Int J Electr Power Energy Syst. 2016; 78: 857-863. https://doi.org/10.1016/j.ijepes.2015.11.106
- 19Thirugnanasambandam V, Jain T. Placement of synchronized measurements for power system observability during cascaded outages. Int J Emerg Electr Power Syst. 2017; 18(6): 12-19. https://doi.org/10.1515/ijeeps-2017-0040
- 20Zhu S, Wu L, Mousavian S, Roh JH. An optimal joint placement of PMUs and flow measurements for ensuring power system observability under N-2 transmission contingencies. Int J Electr Power Energy Syst. 2018; 95: 254-265. https://doi.org/10.1016/j.ijepes.2017.08.025
- 21Rather ZH, Chen Z, Thøgersen P, Lund P. Pragmatic approach for multistage phasor measurement unit placement: a case study of the Danish power system and inputs from practical experience. Int Trans Electr Energy Syst. 2016; 26(12): 2532-2551. https://doi.org/10.1002/etep.2218
- 22Kumar VSS, Thukaram D. Approach for multistage placement of phasor measurement units based on stability criteria. IEEE Trans Power Syst. 2016; 31(4): 2714-2725. https://doi.org/10.1109/TPWRS.2015.2475164
- 23Nikkhah S, Aghaei J, Safarinejadian B, Norouzi M-A. Contingency constrained phasor measurement units placement with n - k redundancy criterion: a robust optimisation approach. IET Sci Meas Technol. 2018; 12(2): 151-160. https://doi.org/10.1049/iet-smt.2017.0158
- 24Abiri E, Rashidi F, Niknam T. An optimal PMU placement method for power system observability under various contingencies. Int Trans Electr Energy Syst. 2015; 25(4): 589-606. https://doi.org/10.1002/etep.1848
- 25Zhang C, Jia Y, Xu Z, Lai LL, Wong KP. Optimal PMU placement considering state estimation uncertainty and voltage controllability. IET Gener Transm Distrib. 2017; 11(18): 4465-4475. https://doi.org/10.1049/iet-gtd.2016.2023
- 26Niazazari I, Livani H. A PMU-data-driven disruptive event classification in distribution systems. Electr Pow Syst Res. 2018; 157: 251-260. https://doi.org/10.1016/j.epsr.2017.12.021
- 27Sharma C, Tyagi B. Ranking of phasor measurement units based on control strategy for small-signal stability. Int Trans Electr Energy Syst. 2015; 25(10): 2359-2375. https://doi.org/10.1002/etep.1966
- 28Wang C, Qin Z, Hou Y, Yan J. Multi-area dynamic state estimation with PMU measurements by an equality constrained extended Kalman filter. IEEE Trans Smart Grid. 2018; 9(2): 900-910. https://doi.org/10.1109/TSG.2016.2570943
- 29Hajian M, Ranjbar AM, Amraee T, Mozafari B. Optimal placement of PMUs to maintain network observability using a modified BPSO algorithm. Int J Electr Power Energy Syst. 2011; 33(1): 28-34. https://doi.org/10.1016/j.ijepes.2010.08.007
- 30Chakrabarti S, Kyriakides E, Eliades DG. Placement of synchronized measurements for power system observability. IEEE Trans Power Deliv. 2009; 24(1): 12-19. https://doi.org/10.1109/TPWRD.2008.2008430
- 31Aminifar F, Fotuhi-Firuzabad M, Shahidehpour M, Khodaei A. Observability enhancement by optimal PMU placement considering random power system outages. Energy Syst. 2011; 2(1): 45-65. https://doi.org/10.1007/s12667-011-0025-x
10.1007/s12667-011-0025-x Google Scholar
- 32Li Q, Cui T, Weng Y, Negi R, Franchetti F, Ilic MD. An information-theoretic approach to PMU placement in electric power systems. IEEE Trans Smart Grid. 2013; 4(1): 446-456. https://doi.org/10.1109/TSG.2012.2228242
- 33Expsito AG, Abur A. Generalized observability analysis and measurement classification. In: Proceedings of the 20th International Conference on Power Industry Computer Applications. IEEE; : 97-103. https://doi.org/10.1109/PICA.1997.599383
- 34AlRashidi MR, El-Hawary ME. A survey of particle swarm optimization applications in electric power systems. IEEE Trans Evol Comput. 2009; 13(4): 913-918. https://doi.org/10.1109/TEVC.2006.880326
- 35del Valle Y, Venayagamoorthy GK, Mohagheghi S, Hernandez J-C, Harley RG. Particle swarm optimization: basic concepts, variants and applications in power systems. IEEE Trans Evol Comput. 2008; 12(2): 171-195. https://doi.org/10.1109/TEVC.2007.896686
- 36Kennedy J, Eberhart RC. A discrete binary version of the particle swarm algorithm. In: 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation. Vol 5. IEEE; : 4104-4108. https://doi.org/10.1109/ICSMC.1997.637339
- 37Dobson I. Where is the edge for cascading failure?: challenges and opportunities for quantifying blackout risk. In: 2007 IEEE Power Engineering Society General Meeting. IEEE; 2007: 1-8. https://doi.org/10.1109/PES.2007.385773
- 38Cupac V, Lizier JT, Prokopenko M. Comparing dynamics of cascading failures between network-centric and power flow models. Int J Electr Power Energy Syst. 2013; 49(1): 369-379. https://doi.org/10.1016/j.ijepes.2013.01.017
- 39Chu C-C, HH-C I. Complex networks theory for modern smart grid applications: a survey. IEEE J Emerg Sel Top Circuits Syst. 2017; 7(2): 177-191. https://doi.org/10.1109/JETCAS.2017.2692243
- 40Dobson I, Carreras BA, Lynch VE, Newman DE. An initial model fo complex dynamics in electric power system blackouts. In: Proceedings of the 34th Annual Hawaii International Conference on System Sciences. IEEE Comput. Soc; : 710-718. https://doi.org/10.1109/HICSS.2001.926274
- 41 IEEE Press Series in Power Engineering. In: Risk Assessment of Power Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2014: 531-534 https://doi.org/10.1002/9781118849972.oth.
10.1002/9781118849972.oth Google Scholar
- 42Hui Ren, Dobson I, Carreras BA. Long-term effect of the n-1 criterion on cascading line outages in an evolving power transmission grid. IEEE Trans Power Syst. 2008; 23(3): 1217-1225. https://doi.org/10.1109/TPWRS.2008.926417
- 43Mei S, He F, Zhang X, Wu S, Wang G. An improved OPA model and blackout risk assessment. IEEE Trans Power Syst. 2009; 24(2): 814-823. https://doi.org/10.1109/TPWRS.2009.2016521
- 44Newman DE, Carreras BA, Lynch VE, Dobson I. Exploring complex systems aspects of blackout risk and mitigation. IEEE Trans Reliab. 2011; 60(1): 134-143. https://doi.org/10.1109/TR.2011.2104711
- 45Kirschen DS, Bell KRW, Nedic DP, Jayaweera D, Allan RN. Computing the value of security. IEE Proc - Gener Transm Distrib. 2003; 150(6): 673. https://doi.org/10.1049/ip-gtd:20030796
- 46 The IEEE 57-bus and 118-bus test case. http://www.ee.washington.edu/research/pstca/pf57/pg_tca57bus.htm.
- 47Mei S, Ni Y, Wang G, Wu S. A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin. IEEE Trans Power Syst. 2008; 23(4): 1719-1726. https://doi.org/10.1109/TPWRS.2008.2002295