On the Impact of Light on Nanoindentations in ZnSe
B. Wolf
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorA. Belger
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorD.C. Meyer
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorP. Paufler
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorB. Wolf
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorA. Belger
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorD.C. Meyer
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorP. Paufler
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Search for more papers by this authorAbstract
The (111Zn) surface of single-crystalline ZnSe was subject to nanoindentations in darkness and under illumination using white light. A positive photoplastic effect was observed in the load range from 200 μN to 2 mN: a reduction of the penetration depth by about 5%, resulting in a reversible hardness increase by 10% under illumination. The effect was found to saturate already at 30 mW/cm2, comparable to daylight intensity. There is also a photoplastic after-effect for some seconds, i.e. a reduced hardness increase was found after having turned off the light some seconds before performing the indent.
References
- [1] Yu.A. Osipyan, V.F. Petrenko, A.V. Zaretskij, and R.W. Whitworth, Adv. Phys. 35, 115 (1986).
- [2] S. Takeuchi, K. Maeda, and K. Nagakawa, Defects in Semiconductors II, MRS Symp. Proc., Vol. 14, Eds. S. Mahajan and J. W. Corbett, North Holland, New York 1983.
- [3] B.E. Mdivanyan and M.Sh. Shikhsaidov, phys. stat. sol. (a) 107, 131 (1988).
- [4] L. Carlsson and C.N. Ahlquist, J. Appl. Phys. 43, 2529 (1972).
- [5] S. Koubaiti, J.J. Couderc, C. Levade, and G. Vanderschaeve, Mater. Sci. Eng. A 234–236, 865 (1997).
- [6] S. Koubaiti, J.J. Couderc, C. Levade, and G. Vanderschaeve, Eur. Phys. J. Appl. Phys. 1, 141 (1998).
- [7] S. Koubaiti, J.J. Couderc, C. Levade, and G. Vanderschaeve, Scripta Mater. 34, 869 (1996).
- [8] S. Koubaiti, J.J. Couderc, C. Levade, and G. Vanderschaeve, Philos. Mag. 80, 83 (2000).
- [9] S. Koubaiti, J.J. Couderc, C. Levade, and G. Vanderschaeve, Acta Mater. 44, 3279 (1996).
- [10] C. Levade and G. Vanderschaeve, phys. stat. sol. (a) 171, 83 (1999).
- [11] J.S. Nadeau, J. Appl. Phys. 35, 669 (1964).
- [12] M.L. Trunov, J. Non-Cryst. Solids 192/193, 431 (1995).
- [13] J.J. Couderc, C. Levade, and A. Kara, Rev. Phys. Appl. 25, 1129 (1990).
- [14] K. Maeda and S. Takeuchi, in: Dislocations in Solids, Eds. F. R. N. Nabarro and M. S. Duesberry, Vol. 10, Elsevier, Amsterdam 1996 (Chap. 54, pp. 444–504).
- [15] E.Y. Gutmanas, N. Travitzky, and P. Haasen, phys. stat. sol. (a) 51, 435 (1979).
- [16] M.S. Shikhsaidov, Sov. Phys. – Solid State 23, 968 (1981).
- [17] B.E. Mdivanyan, Yu.A. Osipyan, and M.Sh. Shikhsaidov, Sov. Phys. – Solid State 30, 760 (1988).
- [18] G.C. Kuczynski, K.R. Iyer, and C.W. Allen, J. Appl. Phys. 43, 1337 (1972).
- [19] K. Suzuki, M. Ichihara, S. Takeuchi, K. Nagakawa, K. Maeda, and H. Iwanaga, Philos. Mag. A 49, 451 (1984).
- [20] CrysTec GmbH, Köpenicker Strasse 325, D-12555 Berlin, Germany.
- [21] B. Bhushan, A.V. Kulkarni, W. Bonin, and J.T. Wyrobek, Philos. Mag. A 74, 1117 (1996).
- [22] B. Wolf, Cryst. Res. Technol. 35, 377 (2000).
- [23] J.S. Field and M.V. Swain, J. Mater. Res. 8, 297 (1993).
- [24] W.C. Oliver and G.M. Pharr, J. Mater. Res. 7, 1564 (1992).
- [25] D.F. Bahr, D.E. Kramer and W.W. Gerberich, Acta Mater. 46, 3605 (1998).
- [26] K.L. Johnson, J. Mech. Phys. Solids 18, 115 (1970).
- [27] D. Tabor, The Hardness of Metals, Clarendon Press, Oxford 1951 (pp. 28–30 and 46).
- [28] J.S. Field and M.V. Swain, J. Mater. Res. 10, 101 (1995).
- [29] G.F. Garlick, Photoconductivity, in: Encyclopedia of Physics, Ed. S. Flügge, Vol. 19, SpringerVerlag, Berlin 1956 (pp. 316–394).
- [30] L. Carlsson and C. Svensson, J. Appl. Phys. 41, 1652 (1970).
- [31] A. Kara, J.J. Couderc, C. Levade, and G. Vanderschaeve, phys. stat. sol. (a) 122, 545 (1990).
- [32] K. Nakagawa, K. Maeda, and S. Takeuchi, J. Phys. Soc. Jpn. 48, 2173 (1980).
- [33] G.A. Ermakov, E.V. Korovkin, Yu.A. Osipyan and M. Shikhsaidov, Sov. Phys. – Solid State 17, 1561 (1975).
- [34] J.J. Gilman, in: The Science of Hardness Testing and its Research Applications, Eds. J. H. Westbrook and H. Conrad, American Society for Metals, Metals Park, Ohio 1971 (pp. 54–58).
- [35] R.W. Rice, in: The Science of Hardness Testing and its Research Applications, Eds. J. H. Westbrook and H. Conrad, American Society for Metals, Metals Park, Ohio 1971 (pp. 120–122).
- [36] L.G. Kirichenko, V.F. Petrenko, and G.V. Uimin, Sov. Phys. – JETP 47, 389 (1978).
- [37] T. Soma, J. Phys. C 11, 2681 (1978).
- [38] T. Soma, H. Matsuo, and H.-M. Kagaya, Solid State Commun. 50, 261 (1984).
- [39] V.I. Smelyansky and J.S. Tse, Phys. Rev. B 52, 4658 (1995).
- [40] W.D. Nix, Progress report “Mechanical Properties of Materials with Nanometer Scale Microstructures”, Stanford University, Stanford, November 1997.
- [41] P.B. Hirsch, P. Pirouz, S.G. Roberts, and P.D. Warren, Philos. Mag. B 52, 759 (1985).
- [42] P.M. Sargent, in: Microindentation Techniques in Materials Science and Engineering, ASTM STP 889, Eds. P. J. Blau and B. R. Lawn, ASTM, Philadelphia 1986 (pp. 160–174).
- [43] M. Atkinson, J. Mater. Sci. 30, 1728 (1995).
- [44] M.C. Gupka and A.L. Ruoff, J. Appl. Phys. 51, 1072 (1980).
- [45] M. Kobayashi, H. Iwata, T. Horiguchi, and S. Endo, phys. stat. sol. (b) 198, 521 (1996).
- [46] D. Coster, K.S. Knol, and J.A. Prins, Z. Phys. 63, 345 (1930).