Noninterpenetrating Square-Grid Coordination Polymers With Dimensions of 25×25 Å2 Prepared by Using N,N′-Type Ligands: The First Chiral Square-Grid Coordination Polymer
Neil G. Pschirer
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorDelia M. Ciurtin
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorMark D. Smith Dr.
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorUwe H. F. Bunz Prof. Dr.
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorHans-Conrad zur Loye Prof. Dr.
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorNeil G. Pschirer
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorDelia M. Ciurtin
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorMark D. Smith Dr.
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorUwe H. F. Bunz Prof. Dr.
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorHans-Conrad zur Loye Prof. Dr.
Department of Chemistry and Biochemistry University of South Carolina Columbia, SC 29208 (USA) Fax: (+1) 803-777-8508
Search for more papers by this authorFinancial support was provided in part by the National Science Foundation through Grants DMR:9873570 and CHE:9814118, and in part by the South Carolina Commission on Higher Education through Grant CHE:R00-U25.
Graphical Abstract
Use of a chiral, fluorene-based N,N′-bipyridine-type ligand (9,9-bis[(S)-2-methylbutyl]-2,7-bis(4-pyridylethynyl)fluorene) with a CuII salt led to the formation of the first chiral non-interpenetrating square-grid coordination polymer (see picture). The free space in the polymer can be controlled by adjusting the size of the side chains attached to the ligand. The large channels and the incorporation of chirality into the polymer make such compounds strong candidates for chiral recognition applications.
References
- 1 Design of Solids From Molecular Building Blocks: Golden Opportunities for Solid State Chemistry, (Eds.: O. M. Yaghi, M. O'Keeffe), J. Solid State Chem. 2000, 152.
- 2
Y.-B. Dong, M. D. Smith, H.-C. zur Loye, Angew. Chem. 2000, 112, 4441,
Angew. Chem. Int. Ed. 2000, 39, 4271.
10.1002/1521-3773(20001201)39:23<4271::AID-ANIE4271>3.0.CO;2-1 CAS PubMed Web of Science® Google Scholar
- 3 J. Kang, G. Hilmersson, J. Santamaria, J. Rebek, Jr., J. Am. Chem. Soc. 1998, 120, 3650.
- 4 J. Kang, J. Santamaria, G. Hilmersson, J. Rebek, Jr., J. Am. Chem. Soc. 1998, 120, 7389.
- 5 K. Yünlü, N. Höck, R. D. Fischer, Angew. Chem. 1985, 97, 863; Angew. Chem. Int. Ed. Engl. 1985, 24, 879.
- 6 B. L. Chen, M. Eddaoudi, S. T. Hyde, M. O'Keeffe, O. M. Yaghi, Science 2001, 291, 1021.
- 7 Y.-B. Dong, R. C. Layland, N. G. Pschirer, M. D. Smith, U. H. F. Bunz, H.-C. zur Loye, Chem. Mater. 1999, 11, 1413.
- 8 Y.-B. Dong, M. D. Smith, H.-C. zur Loye, Solid State Sci. 2000, 2, 861.
- 9
- 9a K. Biradha, M. Fujita, Chem. Commun. 2001, 15;
- 9b P. J. Stang, B. Olenyuk, Acc. Chem. Res., 1977, 30, 502;
- 9c P. J. Stang, D. H. Cao, S. Saito, A. M. Arif, J. Am. Chem. Soc. 1995, 117, 6273.
- 10 Y.-B. Dong, M. D. Smith, R. C. Layland, H.-C. zur Loye, Chem. Mater. 2000, 12, 1156.
- 11 M. J. Zaworotko, Chem. Commun. 2001, 1.
- 12
K. Biradha, Y. Hongo, M. Fujita, Angew. Chem. 2000, 112, 4001;
10.1002/1521-3757(20001103)112:21<4001::AID-ANGE4001>3.0.CO;2-5 Google ScholarAngew. Chem. Int. Ed. 2000, 39, 3843.10.1002/1521-3773(20001103)39:21<3843::AID-ANIE3843>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 13
S. R. Batten, R. Robson, Angew. Chem. 1998, 110, 1558;
10.1002/(SICI)1521-3757(19980605)110:11<1558::AID-ANGE1558>3.0.CO;2-7 Google ScholarAngew. Chem. Int. Ed. 1998, 37, 1460.10.1002/(SICI)1521-3773(19980619)37:11<1460::AID-ANIE1460>3.0.CO;2-Z CAS PubMed Web of Science® Google Scholar
- 14 U. Bunz, H.-C. zur Loye, unpublished results, 2001.
- 15 3: 9,9-Diethyl-2,7-diethynylfluorene (0.26 g, 0.96 mmol), 4-bromopyridine hydrochloride (0.47 g, 2.40 mmol), [Pd(PPh3)2Cl2] (0.05 g, 0.07 mmol), CuI (0.14 g, 0.072 mmol), and PPh3 (0.50 g, 0.01 mmol) were dissolved in triethylamine (20 mL) in a dry Schlenk flask thoroughly flushed with nitrogen, and heated to 70 °C for 24 h. After aqueous workup and column chromatography (CH2Cl2/MeOH), 3 (0.39 g, 96 %) was isolated as a yellow powder: m.p. 191–194; 1H NMR (CDCl3): δ=8.60 (dd, 4 H, J=1.7, 4.7 Hz), 7.70 (d, 2 H, J=7.7 Hz), 7.54 (d, 2 H, J=8.0 Hz), 7.52 (s, 2 H), 7.39 (dd, 4 H, J=1.7, 4.4 Hz) 2.06 (q, J=7.1 Hz, 4 H), 0.32 (t, J=7.1 Hz); 13C NMR: δ=150.3, 149.6, 141.5, 132.0, 131.9, 131.4, 131.1, 128.4, 128.3, 126.2, 125.3, 120.9, 120.1, 94.8, 87.1, 56.3, 32.5, 8.3. 4: 9,9-Bis[(S)-2-methylbutyl]-2,7-di(trimethylsilylethynyl)fluorene (2.00 g, 5.23 mmol) and 4-bromopyridine hydrochloride (3.05 g, 15.68 mmol) were dissolved in triethylamine (10 mL) in a dry Schlenk flask thoroughly flushed with nitrogen. KOH/EtOH solution (10 % solution; 10 mL) was then added followed by the addition of [Pd(PPh3)2Cl2] (0.08 g, 0.11 mmol), CuI (0.03 g, 0.16 mmol), and PPh3 (0.08 g, 0.30 mmol). The flask was once again flushed with nitrogen then heated to 70 °C for 14 h. After aqueous workup and column chromatography (CH2Cl2/MeOH), the product 4 (1.05 g, 39 %) was isolated as a pale yellow powder: m.p. 173–175; 1H NMR (CDCl3): δ=8.60 (d, 4 H, J=5.0 Hz), 7.70 (d, 2 H, J=8.4 Hz), 7.58–7.51 (m, 4 H), 7.41 (d, J=5.7 Hz), 2.14–2.07 (m, 2 H), 1.93–1.86 (m, 2 H), 0.94–0.75 (m, 4 H), 0.58 (dd, 8 H, J=14.8, 7.3 Hz), 0.26 (dd, 6 H, J=15.6, 6.8 Hz); 13C NMR (CHCl3): δ=151.7, 151.4, 151.0, 149.6, 141.4, 141.3, 131.7, 131.2, 127.4, 127.2, 127.0, 120.5, 120.2, 95.1, 87.0, 54.9, 54.8, 47.9, 47.8, 31.1, 30.9, 30.7, 30.6, 20.9, 20.8, 10.9, 10.8.
- 16 Crystal data 5: Cu(C30H24N2)2(NO3)2(solvent)x; Mr=992.61, rectangular green bar, dimensions 0.40×0.20×0.18 mm3, monoclinic, P21/c, a=33.373(3), b=33.578(3), c=8.5066(9) Å, β=97.029(3)°, V=9461.0(2) Å3, Z=4. Intensity data covering a hemisphere of reciprocal space measured (ω scan mode) to 2θmax=50.1° with a Bruker SMART APEX CCD diffractometer (MoKα radiation, λ=0.71073 Å), at 293(2) K. A total of 55 524 reflections collected; 16 730 independent, 6324 with I>2σ(I). Lorentzian polarization and absorption corrections applied (SADABS, μ=0.260 mm−1, Tmax/Tmin=0.980/0.856). Structure solved with direct methods; refined against F 2 using all data (SHELXTL version 5.1): R1=0.0541, wR2=0.1338 (I>2σ(I)). The sea of diffusely scattering solvent accounted for with the SQUEEZE program (solvent-accessible void volume=5115 Å3, or 1407 e−/cell).[17] The final ρcalcd, F(000), and Mr reflect known contents only. Crystal data 6: Cu(C37H36N2)2(NO3)2(CH2Cl2)⋅2(C2H5OH), Mr=1381.98, green plate, dimensions 0.22×0.12×0.03 mm3, monoclinic, P21, a=10.432(3), b=31.631(9), c=10.910(3) Å, β=96.126(6)°, V=3579.6(2) Å3, Z=2. Intensity data covering a hemisphere of reciprocal space measured (ω scan mode) to 2θmax=45.4° with a Bruker SMART APEX CCD diffractometer (MoKα radiation, λ=0.71073 Å) at 173(2) K. A total of 16 560 reflections collected; 9462 independent, 2408 with I>2σ(I). Lorentzian polarization correction applied; no absorption correction (μ=0.44 mm−1). Structure solved with direct methods; refined against F 2 using all data (SHELXTL version 5.1): R1=0.0700, wR2=0.1184 (I>2σ(I)).
- 17 A. M. C. T. PLATON, Utrecht University, Utrecht, The Netherlands, Spek, A.L. 1998.
- 18 T. Ezuhara, K. Endo, Y. Aoyama, J. Am. Chem. Soc. 1999, 121, 3279.
- 19
K. Biradha, C. Seward, M. J. Zaworotko, Angew. Chem. 1999, 111, 584;
10.1002/(SICI)1521-3757(19990215)111:4<584::AID-ANGE584>3.0.CO;2-Z Google ScholarAngew. Chem. Int. Ed. 1999, 38, 492.10.1002/(SICI)1521-3773(19990215)38:4<492::AID-ANIE492>3.0.CO;2-# CAS PubMed Web of Science® Google Scholar
- 20 Z.-F. Chen, R.-G. Xiong, J. Zhang, J.-L. Zuo, X.-Z. You, C.-M. Che, H.-K. Fun, J. Chem. Soc. Dalton Trans. 2000, 4010.
- 21 A. Fragoso, M. L. Kahn, A. Casineiras, J.-P. Sutter, O. Kahn, R. Cao, Chem. Commun. 2000, 1547.
- 22 L. Carlucci, G. Ciani, D. M. Proserpio, S. Rizzato, Chem. Commun. 2000, 1319.
- 23 A. J. Blake, N. R. Champness, P. A. Cooke, J. E. B. Nicolson, Chem. Commun. 2000, 665.
- 24 L. Carlucci, G. Ciani, P. Macchi, D. M. Proserpio, Chem. Commun. 1998, 1837.
- 25
O. Mamula, Von Zelewsky, T. Bark, G. Bernardinelli, Angew. Chem. 1999, 111, 3129;
10.1002/(SICI)1521-3757(19991004)111:19<3129::AID-ANGE3129>3.0.CO;2-X Google ScholarAngew. Chem. Int. Ed. 1999, 38, 2945.10.1002/(SICI)1521-3773(19991004)38:19<2945::AID-ANIE2945>3.0.CO;2-D CAS PubMed Web of Science® Google Scholar