Dynamics of Hole Trapping by G, GG, and GGG in DNA
William B. Davis Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorIzabela Naydenova Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorReinhard Haselsberger Dipl.-Phys.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorAlexander Ogrodnik Priv.-Doz. Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorBernd Giese Prof. Dr.
Institut für Organische Chemie der Universität St.-Johanns-Ring 19, 4056 Basel (Switzerland) Fax: (+41) 61-2671105
Search for more papers by this authorMaria E. Michel-Beyerle Prof. Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorWilliam B. Davis Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorIzabela Naydenova Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorReinhard Haselsberger Dipl.-Phys.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorAlexander Ogrodnik Priv.-Doz. Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorBernd Giese Prof. Dr.
Institut für Organische Chemie der Universität St.-Johanns-Ring 19, 4056 Basel (Switzerland) Fax: (+41) 61-2671105
Search for more papers by this authorMaria E. Michel-Beyerle Prof. Dr.
Institut für Physikalische und Theoretische Chemie Technische Universität München Lichtenbergstrasse 4, 85748 Garching (Germany) Fax: (+49) 89-289-13026
Search for more papers by this authorWe thank Joshua Jortner, Notker Rösch, and Alexander Voityuk for stimulating discussions and critical reading of the manuscript. W.B.D. greatly appreciates a postdoc fellowship from the Alexander von Humboldt Foundation. Financial support from the Volkswagenstiftung is gratefully acknowledged.
Abstract
Hole transfer from an excited, DNA-intercalated injector (1), to either G or to the “traps” GG or GGG occurs with similar rates, and always results in oxidation of the proximate guanine residue. These results indicate that charge trapping in GG or GGG must occur by a relaxation mechanism (structural and/or energetic) which is inherent in these sequences in DNA duplexes.
References
- 1a S. Steenken, Biol. Chem. 1997, 378, 1293;
- 1b
U. Diederichsen, Angew. Chem. 1997, 109, 2411; Angew. Chem. Int. Ed. Engl. 1997, 36, 2317;
10.1002/ange.19971092106 Google Scholar
- 1c C. J. Burrows, J. G. Muller, Chem. Rev. 1998, 98, 1109;
- 1d F. LePage, A. Guy, J. Cadet, A. Sarasin, A. Gentil, Nucleic Acids Res. 1998, 26, 1276.
- 2a P. M. Cullis, J. D. McClymoun, M. C. R. Symons, J. Chem. Soc. Faraday Trans. 1990, 86, 591;
- 2b
P. O'Neill, E. M. Fielden, Adv. Radiat. Biol. 1993, 17, 53;
10.1016/B978-0-12-035417-7.50005-2 Google Scholar
- 2c S. Steenken, Chem. Rev. 1989, 89, 503;
- 2d C. von Sonntag, H.-P. Schuchmann, Int. J. Radiat. Biol. 1986, 49, 1;
- 2e A. P. Breen, J. A. Murphy, Free Radical Biol. Med. 1995, 18, 1033.
- 3a C. A. M. Seidel, A. Schulz, H. M. Sauer, J. Phys. Chem. 1996, 100, 5541;
- 3b S. Steenken, S. V. Jovanovic, J. Am. Chem. Soc. 1997, 119, 617;
- 3c V. Y. Shafirovich, S. H. Courtney, N. Ya, N. E. Geacintov, J. Am. Chem. Soc. 1995, 117, 4920.
- 4a A. Spassky, D. Angelov, Biochemistry 1997, 36, 6571;
- 4b P. M. Cullis, M. E. Malone, L. A. Merson-Davies, J. Am. Chem. Soc. 1996, 118, 2775;
- 4c K. Kino, I. Saito, H. Sugiyama, J. Am. Chem. Soc. 1998, 120, 7373.
- 5a E. Meggers, M. E. Michel-Beyerle, B. Giese, J. Am. Chem. Soc. 1998, 120, 12 950;
- 5b
B. Giese, S. Wessley, M. Spormann, U. Lindemann, E. Meggers, M. E. Michel-Beyerle, Angew. Chem. 1999, 111, 1050; Angew. Chem. Int. Ed. 1999, 38, 996.
10.1002/(SICI)1521-3757(19990401)111:7<1050::AID-ANGE1050>3.0.CO;2-9 Google Scholar
- 6a I. Saito, M. Takayama, H. Sugiyama, K. Nakatani, A. Tsuchida, M. Yamamoto, J. Am. Chem. Soc. 1995, 117, 6406;
- 6b K. Ito, S. Inoue, K. Yamamoto, S. Kawanishi, J. Biol. Chem. 1993, 268, 13 221;
- 6c D. T. Breslin, G. B. Schuster, J. Am. Chem. Soc. 1996, 118, 2311;
- 6d K. Nakatani, C. Dohno, T. Nakamura, I. Saito, Tetrahedron Lett. 1998, 39, 2779;
- 6e T. Melvin, S. Cunniffe, D. Papworth, T. Roldan-Arjona, P. O'Neill, Photochem. Photobiol. 1997, 65, 660;
- 6f J. G. Muller, R. P. Hickerson, R. J. Perez, C. J. Burrows, J. Am. Chem. Soc. 1997, 119, 1503;
- 6g M. F. Sistare, S. J. Codden, G. Heimlich, H. H. Thorp, J. Am. Chem. Soc. 2000, 122, 4742.
- 7a I. Saito, T. Nakamura, K. Nakatani, J. Am. Chem. Soc. 2000, 122, 3001;
- 7b H. Sugiyama, I. Saito, J. Am. Chem. Soc. 1996, 118, 7063;
- 7c F. Prat, K. N. Houk, C. S. Foote, J. Am. Chem. Soc. 1998, 120, 845;
- 7d M. Hutter, M. Clark, J. Am. Chem. Soc. 1996, 118, 7574.
- 8a S. Kawanishi, S. Oikawa, M. Murata, H. Tsukitome, I. Saito, Biochemistry 1999, 38, 16 733;
- 8b K. Ito, S. Inoue, K. Yamamoto, S. Kawanishi, J. Biol. Chem. 1993, 268, 13 221;
- 8c K. Ito, S. Kawanishi, Biochemistry 1997, 36, 1774;
- 8d A. Spassky, D. Angelov, Biochemistry 1997, 36, 6571;
- 8e D. B. Hall, R. E. Holmlin, J. K. Barton, Nature 1996, 382, 731;
- 8f
R. E. Holmlin, P. J. Dandliker, J. K. Barton, Angew. Chem. 1997, 109, 2830; Angew. Chem. Int. Ed. Engl. 1997, 36, 2714;
10.1002/ange.19971092404 Google Scholar
- 8g D. B. Hall, S. O. Kelley, J. K. Barton, Biochemistry 1998, 37, 15 933.
- 9a I. Saito, T. Nakamura, K. Nakatani, Y. Yoshioka, K. Yamaguchi, H. Sugiyama, J. Am. Chem. Soc. 1998, 120, 12 686;
- 9b Y. Yoshioka, Y. Kitagawa, Y. Takano, K. Yamaguchi, T. Nakamura, I. Saito, J. Am. Chem. Soc. 1999, 121, 8712.
- 10 A. A. Voityuk, J. Jortner, M. Bixon, N. Rösch, Chem. Phys. Lett. 2000, 324, 430.
- 11 For studies involving similar X+-DNA duplexes, see:
- 11a K. Fukui, K. Tanaka, M. Fujitsuka, A. Watanabe, O. Ito, J. Photochem. Photobiol. B 1999, 50, 18;
- 11b K. Fukui, K. Tanaka, Angew. Chem. 1998, 110, 167; Angew. Chem. Int. Ed. 1998, 37, 158;
- 11c K. Fukui, K. Tanaka, Nucleic Acids Res. 1996, 24, 3962.
- 12 S. Hess, M. Götz, W. B. Davis, M. E. Michel-Beyerle, unpublished results. When intercalated in the DNA duplexes presented in this paper, X+ displays a rapid excited-state relaxation (on the 50 ps time scale) which leads to energy loss. When a charge-shift reaction can compete with this relaxation, the forward-transfer rate has been shown to be (nearly) free of activation barriers and is faster than the back-transfer rate, which is deep in the Marcus-inverted region of the log (rate) versus energy plot. In this case, the intermediate X. is seen in absorption. Conversely, when charge transfer cannot compete with relaxation, there is excited-state energy loss and the activation energy of the forward transfer increases. This leads to kinetics where the rate of charge recombination is faster than that of the forward charge-shift reaction and, thus, the X. intermediate is not detectable.
- 13 The laser system used to obtain the data reported here has been described in detail previously (M. Volk, G. Aumeier, T. Häberle, A. Ogrodnik, M. E. Michel-Beyerle, Biochim. Biophys. Acta 1992, 1102, 253) and is arranged for ultrahigh sensitivity probing, ΔOD>10−4.
- 14 In the inverted region, electron-transfer reactions usually display small activation energies due to vibronic coupling. See, for instance:
- 14a R. A. Marcus, N. Sutin, Biochem. Biophys. Acta 1985, 811, 265;
- 14b M. Bixon, J. Jortner, Adv. Chem. Phys. 1999, 106, 35.
- 15 Structural characterization of the duplexes using 2D-NMR techniques is currently underway in collaboration with C. Griesinger, University of Frankfurt.
- 16 A. A. Voityuk, N. Rösch, M. Bixon, J. Jortner, J. Phys. Chem. B 2000, in press.
- 17
E. Meggers, D. Kusch, M. Spichty, U. Willie, B. Giese, Angew. Chem. 1998, 110, 474; Angew. Chem. Int. Ed. 1998, 37, 460.
10.1002/(SICI)1521-3757(19980216)110:4<473::AID-ANGE473>3.0.CO;2-B Google Scholar
- 18 F. D. Lewis, X. Liu, J. Liu, S. E. Miller, R. T. Hayes, M. R. Wasielewski, Nature 2000, 406, 51.
- 19 M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M. E. Michel-Beyerle, J. Jortner, Proc. Natl. Acad. Sci. USA 1999, 96, 11 713.