Self-Assembly of Pentameric Porphyrin Light-Harvesting Antennae Complexes
Richard A. Haycock Dr.
Krebs Institute for Biomolecular Science Department of Chemistry University of Sheffield Sheffield S3 7HF (UK) Fax: (+44) 114-273-8673
Search for more papers by this authorArkady Yartsev Dr.
Department of Chemistry University of Lund Lund (Sweden)
Search for more papers by this authorUlrike Michelsen Dr.
Krebs Institute for Biomolecular Science Department of Chemistry University of Sheffield Sheffield S3 7HF (UK) Fax: (+44) 114-273-8673
Search for more papers by this authorVilly Sundström Prof.
Department of Chemistry University of Lund Lund (Sweden)
Search for more papers by this authorChristopher A. Hunter Prof.
Krebs Institute for Biomolecular Science Department of Chemistry University of Sheffield Sheffield S3 7HF (UK) Fax: (+44) 114-273-8673
Search for more papers by this authorRichard A. Haycock Dr.
Krebs Institute for Biomolecular Science Department of Chemistry University of Sheffield Sheffield S3 7HF (UK) Fax: (+44) 114-273-8673
Search for more papers by this authorArkady Yartsev Dr.
Department of Chemistry University of Lund Lund (Sweden)
Search for more papers by this authorUlrike Michelsen Dr.
Krebs Institute for Biomolecular Science Department of Chemistry University of Sheffield Sheffield S3 7HF (UK) Fax: (+44) 114-273-8673
Search for more papers by this authorVilly Sundström Prof.
Department of Chemistry University of Lund Lund (Sweden)
Search for more papers by this authorChristopher A. Hunter Prof.
Krebs Institute for Biomolecular Science Department of Chemistry University of Sheffield Sheffield S3 7HF (UK) Fax: (+44) 114-273-8673
Search for more papers by this authorWe thank the EPSRC (R.A.H.) and the Lister Institute (C.A.H.) for funding. V.S. and A.Y. thank the Swedish NFR and the K&A Wallenberg Foundation for financial support.
Abstract
References
- 1a S. M. Prince, M. Z. Papiz, A. A. Freer, G. McDermott, A. M. Hawthornewaite-Lawless, R. J. Codgell, N. W. Isaacs, J. Mol. Biol. 1997, 268, 412–423;
- 1b G. McDermott, S. M. Prince, A. A. Freer, A. M. Hawthornewaite-Lawless, M. Z. Papiz, R. J. Codgell, N. W. Isaacs, Nature 1995, 374, 517–521.
- 2 J. Diesenhofer, O. Epp, K. Miki, R. Huber, H. Michel, Nature 1985, 318, 618–624.
- 3 G. Feher, J. P. Allen, M. Y. Okamura, D. C. Rees, Nature 1989, 339, 111–116.
- 4 R. Van Grondelle, J. P. Dekker, T. Gillbro, V. Sundström, Biochim. Biophys. Acta 1994, 1187, 1–65.
- 5 T. Pullerits, V. Sundström, Acc. Chem. Res. 1996, 29, 381–389.
- 6a
A. Harriman, Supramolecular Photochemistry, ( ), Reidel, Dordrecht, 1987, pp. 207–238;
10.1007/978-94-009-3979-0_13 Google Scholar
- 6b J. K. M. Sanders in Compehensive Supramolecular Chemistry, Vol. 9 ( ), Pergamon, Oxford, 1997, pp. 131–164.
- 7a J. Seth, V. Palaniappan, T. E. Johnson, S. Prathapan, J. S. Lindsey, D. E. Bocian, J. Am. Chem. Soc. 1994, 116, 10 578–10 592;
- 7b J. Z. Li, A. Ambroise, S. I. Yang, J. R. Diers, J. Seth, C. R. Wack, D. F. Bocian, D. Holten, J. S. Lindsey, J. Am. Chem. Soc. 1999, 121, 8927–8940;
- 7c D. Kuciauskas, P. A. Liddell, S. Lin, T. E. Johnson, S. J. Weghorn, J. S. Lindsey, A. L. Moore, T. A. Moore, D. Gust, J. Am. Chem. Soc. 1999, 121, 8604–8614.
- 8a T. Nagata, A. Osuka, K. Marayuma, J. Am. Chem. Soc. 1990, 112, 3054–3059;
- 8b
A. Nakano, A. Osuka, I. Yamazaki, T. Yamazaki, Y. Nishimura, Angew. Chem. 1998, 110, 3172–3176; Angew. Chem. Int. Ed. 1998, 37, 3023–3027.
10.1002/(SICI)1521-3757(19981102)110:21<3172::AID-ANGE3172>3.0.CO;2-5 Web of Science® Google Scholar
- 9 H. A. M. Biemans, A. E. Rowan, A. Verhoeven, P. Vanoppen, L. Latterini, J. Foekema, A. P. H. Schenning, E. W. Meijer, F. C. de Schryver, R. J. M. Nolte, J. Am. Chem. Soc. 1998, 120, 11 054–11 060.
- 10 P. N. Taylor, H. L. Anderson, J. Am. Chem. Soc. 1999, 121, 11 538–11 545.
- 11a S. Anderson, H. L. Anderson, J. K. M. Sanders, Acc. Chem. Res. 1993, 26, 469–475;
- 11b
S. Anderson, H. L. Anderson, A. Bashall, M. McPartlin, J. K. M. Sanders, Angew. Chem. 1995, 107, 1196; Angew. Chem. Int. Ed. Engl. 1995, 34, 1096–1099.
10.1002/ange.19951071012 Google Scholar
- 12a C. A. Hunter, L. D. Sarson, Angew. Chem. 1994, 106, 2424–2427; Angew. Chem. Int. Ed. Engl. 1994, 33, 2313–2316;
- 12b X. Chi, A. J. Guerin, R. A. Haycock, C. A. Hunter, L. D. Sarson, J. Chem. Soc. Chem. Commun. 1995, 2567–2569;
- 12c C. A. Hunter, R. H. Hyde, Angew. Chem. 1996, 108, 2064–2067; Angew. Chem. Int. Ed. Engl. 1996, 35, 1936–1939.
- 13 A related architecture was reported by J. N. H. Reek, A. P. H. Schenning, A. W. Bosman, E. W. Maijer, M. J. Crossley, Chem. Commun. 1998, 11–12.
- 14 The porphyrin meso substituents are depicted in an αβαβ conformation, but exchange between different atropisomers is fast (on the seconds timescale), and so they equilibrate rapidly to the most stable arrangement for complexation. Models suggest that while Zn21 could coordinate across two cis-meso ligands, this arrangement is less favorable than the trans structure shown in Scheme 1.
- 15 J. S. Lindsey, R. W. Wagner, J. Org. Chem. 1989, 54, 828–836.
- 16 We used racemic 2-ethylhexyl substituents to solubilize H22, so the compound is actually a mixture of diastereoisomers. However, the chiral centers are sufficiently far away from the sites of interaction that no adverse consequences are observed, and the solubility of the porphyrin is dramatically improved. We have also prepared a diastereomeric mixture of the 2-ethylhexyl analogue of Zn21, and the behavior of this system is identical to the n-pentyl-solubilized compound. Zn21: 1H NMR (250 MHz, CDCl3): δ=1.0 (102 H, m), 1.50 (132 H, m), 1.80 (6 H, quin), 1.90 (6 H, quin), 3.95 (12 H, d), 4.15 (12 H, d), 7.20 (6 H, d), 7.70 (6 H, d), 7.75 (6 H, s), 8.30 (8 H, m), 8.75 (3 H, d), 9.05 (16 H, m), 10.00 (2 H, s); MS (+ve FAB) m/z calcd for C191H251N11O14Zn: 3055.91; found: 3057 [MH+]; elemental analysis calculated for C191H251N11O14Zn: C 75.07, H 8.28, N 5.04 %; found: C 75.03, H 8.26, N 4.84 %; m.p. 235–237 °C; λmax (ε): 425.6 (7.52×105), 550.4 (4.97×104), 590.4 nm (1.72×104). H22: 1H NMR (250 MHz, CDCl3): δ=2.75 (2 H, s), 1.00 (36 H, m), 1.50 (44 H, m), 2.00 (4 H, quin), 4.25 (8 H, d), 7.35 (4 H, d), 7.8 (8 H, d), 7.90 (4 H, dd), 8.80 (8 H, d), 9.0 (12 H, s), 9.45 (4 H, m); MS (+ve FAB) m/z calcd for C100H110N12O8: 1608.04; found: 1608 [M+]; accurate mass (+ve FAB) calculated mass for C100H110N12O8: 1607.864785; found: 1607.857164 (+7.6 mDa, +4.7 ppm). Elemental analysis calcd for C100H110N12O8H2O: C 73.84, H 6.94, N 10.33 %; found C 73.94, H 6.89, N 10.48 %; m.p. >298 °C; λmax (ε): 424.5 (3.39×105), 519.0 (1.82×104), 556.0 (1.14×104), 593.0 (6.10×103), 649.0 nm (5.50×103). Zn3: 1H NMR (250 MHz, CDCl3): δ=8.95 (8 H, s), 7.80 (4 H, s), 7.70 (4 H, d), 7.23 (4 H, d), 4.20 (8 H, d), 4.00 (8 H, d), 1.2–2.1 (64 H, m), 0.8–1.19 (48 H, m); MS (+ve FAB) m/z calcd for C108H156N4O8Zn: 1703.44; found: 1703 [M+]; m.p. 141.8 °C; λmax (ε): 426.0 (2.30×105), 553.0 (2.20×104), 594.0 nm (7.05×104).
- 17 The emission from H22 at 720 nm is complicated by the dynamics in the red wing of the decaying fluorescence of Zn21. Qualitatively, there was a rise component in the fluorescence at 720 nm, which is consistent with the 500 ps time scale determined from the decay in the signal at 600 nm, but the fluorescence of H22 at 720 nm was too weak relative to the intense Zn21 fluorescence to extract reliable kinetic parameters.
- 18 Quantum yield of energy transfer=k(energy transfer)/[k(energy transfer)+k(fluorescence)].