Cooperative Asymmetric Catalysis with Dendrimeric [Co(salen)] Complexes
Rolf Breinbauer Dr.
Department of Chemistry and Chemical Biology Harvard University Cambridge, MA 02138 (USA) Fax: (+1) 617-496-1880
Search for more papers by this authorEric N. Jacobsen Prof.
Department of Chemistry and Chemical Biology Harvard University Cambridge, MA 02138 (USA) Fax: (+1) 617-496-1880
Search for more papers by this authorRolf Breinbauer Dr.
Department of Chemistry and Chemical Biology Harvard University Cambridge, MA 02138 (USA) Fax: (+1) 617-496-1880
Search for more papers by this authorEric N. Jacobsen Prof.
Department of Chemistry and Chemical Biology Harvard University Cambridge, MA 02138 (USA) Fax: (+1) 617-496-1880
Search for more papers by this authorProf. M. T. Reetz (Max Planck-Institut für Kohlenforschung, Mülheim/Ruhr) and Mr. J. Hong (Harvard University) are gratefully acknowledged for stimulating discussions. This work was supported by the NIH (GM 43214). R.B. thanks Fonds zur Förderung der Wissenschaftlichen Forschung, Vienna (Erwin-Schrödinger-Fellowship) and Land Oberösterreich (Sonderförderung außerhalb des KIP-Programms) for postdoctoral fellowship support. H2salen=bis(salicylidene)ethylenediamine.
Abstract
Dendrimeric catalysts can present catalytic units in close proximity, thereby inducing useful cooperative effects (see picture). Commercial dendrimers were derivatized with chiral [Co(salen)] complexes and found to display enhanced reactivity relative to monomeric or even dimeric analogues in the hydrolytic kinetic resolution of epoxides.
References
- 1 For leading reviews, see
- 1a D. A. Tomalia, H. D. Durst, Top. Curr. Chem. 1993, 165, 193–313;
- 1b A. W. van der Made, P. W. N. M. van Leeuwen, J. C. de Wilde, R. A. C. Brands, Adv. Mater. 1993, 5, 466–468;
- 1c J. Issberner, R. Moors, F. Vögtle, Angew. Chem. 1994, 106, 2507–2514; Angew. Chem. Int. Ed. Engl. 1994, 33, 2413–2420;
- 1d R. F. Service, Science 1995, 267, 458–459;
- 1e
R. G. Newkome, C. Moorefield, F. Vögtle Dendritic Macromolecules: Concepts, Syntheses, Perspectives, VCH, Weinheim, 1996;
10.1002/9783527614875 Google Scholar
- 1f F. Zeng, S. C. Zimmerman, Chem. Rev. 1997, 97, 1681–1712;
- 1g H. W. I. Peerlings, E. W. Meijer, Chem. Eur. J. 1997, 3, 1563–1570;
- 1h
D. K. Smith, F. Diederich, Chem. Eur. J. 1998, 4, 1353–1361;
10.1002/(SICI)1521-3765(19980807)4:8<1353::AID-CHEM1353>3.0.CO;2-0 CAS Web of Science® Google Scholar
- 1i H.-F. Chow, T. K.-K. Mong, M. F. Nongrum, C.-W. Wan, Tetrahedron 1998, 54, 8543–8600;
- 1j D. Seebach, P. B. Rheiner, G. Greiveldinger, T. Butz, H. Sellner, Top. Curr. Chem. 1998, 197, 125–164;
- 1k
M. Fischer, F. Vögtle, Angew. Chem. 1999, 111, 934–955; Angew. Chem. Int. Ed. 1999, 38, 884–905;
10.1002/(SICI)1521-3757(19990401)111:7<934::AID-ANGE934>3.0.CO;2-4 Google Scholar
- 1l M. A. Hearshaw, J. R. Moss, Chem. Commun. 1999, 1–8;
- 1m G. R. Newkome, E. He, C. N. Moorefield, Chem. Rev. 1999, 99, 1689–1746.
- 2 J. W. J. Knapen, A. W. van der Made, J. C. de Wilde, P. W. N. M. van Leeuwen, P. Wijkens, D. M. Grove, G. van Koten, Nature 1994, 372, 659–663.
- 3 For selected examples of dendrimeric catalysts, see
- 3a J.-L. Fillaut, J. Linares, D. Astruc, Angew. Chem. 1994, 106, 2540–2542; Angew. Chem. Int. Ed. Engl. 1994, 33, 2460–2462;
- 3b A. Miedaner, C. J. Curtis, R. M. Barkley, D. L. DuBois, Inorg. Chem. 1994, 33, 5482–5490;
- 3c J.-J. Lee, W. T. Ford, J. A. Moore, Y. Li, Macromolecules 1994, 27, 4632–4634;
- 3d H. Brunner, J. Organomet. Chem. 1995, 500, 39–46;
- 3e D. Seebach, R. E. Marti, T. Hintermann, Helv. Chim. Acta 1996, 79, 1710–1740;
- 3f C. Bolm, N. Derrien, A. Seger, Synlett 1996, 367–388;
- 3g P. Bhyrappa, J. K. Young, J. S. Moore, K. S. Suslick, J. Mol. Catal. A 1996, 113, 109–116;
- 3h P. Bhyrappa, J. K. Young, J. S. Moore, K. S. Suslick, J. Am. Chem. Soc. 1996, 118, 5708–5711;
- 3i
M. T. Reetz, G. Lohmer, R. Schwickardi, Angew. Chem. 1997, 109, 1559–1562; Angew. Chem. Int. Ed. Engl. 1997, 36, 1526–1529;
10.1002/ange.19971091331 Google Scholar
- 3j T. Suzuki, Y. Hirokawa, K. Ohtake, T. Shibata, K. Soai, Tetrahedron: Asymmetry 1997, 8, 4033–4040;
- 3k C. C. Mak, H.-F. Chow, Macromolecules 1997, 30, 1228–1230;
- 3l H.-F. Chow, C. C. Mak, J. Org. Chem. 1997, 62, 5116–5127;
- 3m C. Köllner, B. Pugin, A. Togni, J. Am. Chem. Soc. 1998, 120, 10 274–10 275;
- 3n R. A. Gossage, J. T. B. H. Jastrzebski, J. van Ameijde, S. J. E. Mulders, A. J. Brouwer, R. M. J. Liskamp, G. van Koten, Tetrahedron Lett. 1999, 40, 1413–1426;
- 3o
H. P. Dijkstra, P. Steenwinkel, D. M. Grove, M. Lutz, A. L. Spek, G. van Koten, Angew. Chem. 1999, 111, 2322–2324; Angew. Chem. Int. Ed. 1999, 38, 2186–2188; recently dendritic palladium catalysts have been used for the allylic substitution in a continuously operating membrane reactor:
10.1002/(SICI)1521-3757(19990802)111:15<2321::AID-ANGE2321>3.0.CO;2-L Web of Science® Google Scholar
- 3p N. Brinkmann, D. Giebel, G. Lohmer, M. T. Reetz, U. Kragl, J. Catal. 1999, 183, 163–168; other applications of dendritic catalysts in membrane reactors:
- 3q
N. J. Hovestad, E. B. Eggeling, H. J. Heidbüchel, J. T. B. H. Jastrzebski, U. Kragl, W. Keim, D. Vogt, G. van Koten, Angew. Chem. 1999, 111, 1763–1765; Angew. Chem. Int. Ed. 1999, 38, 1655–1658;
10.1002/(SICI)1521-3757(19990601)111:11<1763::AID-ANGE1763>3.0.CO;2-T Google Scholar
- 3r D. de Groot, E. B. Eggeling, J. C. de Wilde, H. Kooijman, R. J. van Haaren, A. W. van der Made, A. L. Spek, D. Vogt, J. N. H. Reek, P. C. J. Kramer, P. W. N. M. van Leeuwen, Chem. Commun. 1999, 1623–1624;
- 3s
P. B. Rheiner, D. Seebach, Chem. Eur. J. 1999, 5, 3221–3236;
10.1002/(SICI)1521-3765(19991105)5:11<3221::AID-CHEM3221>3.0.CO;2-P CAS Web of Science® Google Scholar
- 3t
H. Sellner, D. Seebach, Angew. Chem. 1999, 111, 2039–2041; Angew. Chem. Int. Ed. 1999, 38, 1918–1920.
10.1002/(SICI)1521-3757(19990712)111:13/14<2039::AID-ANGE2039>3.0.CO;2-F Google Scholar
- 4 For recent reviews see:
- 4a
M. Mammen, S.-K. Chio, G. M. Whitesides, Angew. Chem. 1998, 110, 2908–2953; Angew. Chem. Int. Ed. 1998, 37, 2755–2794;
10.1002/(SICI)1521-3757(19981016)110:20<2908::AID-ANGE2908>3.0.CO;2-2 Google Scholar
- 4b R. Roy, Top. Curr. Chem. 1997, 187, 241–274;
- 4c N. Jayaraman, S. A. Nepogodiev, J. F. Stoddart, Chem. Eur. J. 1997, 3, 1193–1199.
- 5 Detty et al. reported increased activity per catalytic group in successive generations in the two-phase oxidation of bromide by hydrogen peroxide catalyzed by phenylseleno-containing dendrimers. The authors proposed that the “dendrimer effect” observed in these catalysis may be due to the micelle-like nature of the oxidized catalyst. C. Francavilla, F. V. Bright, M. R. Detty, Org. Lett. 1999, 1, 1043–1046.
- 6
Recently, van Koten et al. reported an interesting inhibitory dendrimer effect in a catalytic system: A. W. Kleij, R. A. Gossage, J. T. B. H. Jastrzebski, J. Boersma, van Koten, Angew. Chem. 2000, 112, 179–181; Angew. Chem. Int. Ed. 2000, 39, 176–178.
10.1002/(SICI)1521-3757(20000103)112:1<179::AID-ANGE179>3.0.CO;2-B Google Scholar
- 7 For reviews, see
- 7a
E. N. Jacobsen, M. H. Wu in Comprehensive Asymmetric Catalysis, Vol. III ( ), Springer, New York, 1999, pp. 1309–1326;
10.1007/978-3-642-58571-5_13 Google Scholar
- 7b E. N. Jacobsen, Acc. Chem. Res. 2000, 33, 421–431; for key primary reports, see:
- 7c L. E. Martinez, J. L. Leighton, D. H. Carsten, E. N. Jacobsen, J. Am. Chem. Soc. 1995, 117, 5897–5898;
- 7d M. Tokunaga, J. F. Larrow, F. Kakiuchi, E. N. Jacobsen, Science 1997, 277, 936–938;
- 7e J. M. Ready, E. N. Jacobsen, J. Am. Chem. Soc. 1999, 121, 6086–6087.
- 8a K. B. Hansen, J. L. Leighton, E. N. Jacobsen, J. Am. Chem. Soc. 1996, 118, 10 924–10 925;
- 8b R. Konsler, J. Karl, E. N. Jacobsen, J. Am. Chem. Soc. 1998, 120, 10 780–10 781;
- 8c J. Hong, D. G. Blackmond, E. N. Jacobsen, unpublished results.
- 9 J. Kovacs, L. Kisfaludy, M. Q. Ceprini J. Am. Chem. Soc. 1967, 89, 183–184. Pentafluorophenyl ester 1 c was prepared from commercially available 4-hydroxyphenylacetic acid in seven steps and 26 % overall yield.
- 10 Although oxidation to the [(salen)CoIII(acetate)] complexes using HOAc/O2 is the method of choice for the preparation of the monomeric catalysts (see ref. [7d]), this proved impractical with the PAMAM-Co complexes because of the basic amine sites in the dendrimer. The [(salen)CoIII(iodide)] complexes obtained by oxidation with I2 have been found to display similar reactivity to the corresponding acetate complexes.[8c]
- 11
4-Co-PAMAM: IR (KBr):
max=3339, 2948, 2864, 1663 (br.), 1609, 1526, 1435, 1253, 1170, 1031, 783; 1H NMR (400 MHz, [D6]DMSO): δ=8.1 (br., 8 H), 7.83 (s, 4 H), 7.79 (s, 4 H), 7.47 (s, 4 H), 7.43 (s, 4 H), 7.33 (s, 4 H), 7.29 (s, 4 H), 3.62 (br. s, 16 H), 3.38 (br. s, 12 H), 3.10 (br. s, 16 H), 2.6–2.2 (br., 16 H), 1.98 (br., 4 H), 1.89 (br., 4 H), 1.76 (s, 36 H), 1.72 (s, 36 H), 1.60 (br. m, 8 H), 1.28 (s, 36 H); 13C NMR (100 MHz, [D6]DMSO): δ=170.7, 164.4, 163.7, 162.5, 161.6, 141.9, 141.4, 135.6, 133.0, 132.2, 129.0, 128.5, 121.2, 118.4, 118.2, 69.2, 69.1, 41.2, 38.2, 35.7, 35.5, 33.5, 31.4, 30.3, 30.2, 29.5, 29.4, 24.2.
- 12
1 b: IR (KBr):
max=3365, 2950, 2864, 1630, 1611, 1526, 1436, 1254, 1170, 783; 1H NMR (400 MHz, [D6]DMSO): δ=8.00 (t, J=5.6 Hz, 1 H), 7.85 (s, 1 H), 7.80 (s, 1 H), 7.50 (d, J=2.4 Hz, 1 H), 7.43 (d, J=2.4 Hz, 1 H), 7.33 (s, 1 H), 7.30 (s, 1 H), 3.62 (br. s, 2 H), 3.35 (s, 2 H), 3.10 (br. s, 2 H), 3.05 (m, J=6.8 Hz, 2 H), 2.00 (br., 2 H), 1.91 (br., 2 H), 1.76 (s, 9 H), 1.60 (br. m, 2 H), 1.40 (m, J=7.2 Hz, 2 H), 1.32 (s, 9 H), 1.28 (m, J=7.2 Hz, 2 H), 0.85 (t, J=7.2 Hz, 3 H); 13C NMR (100 MHz, [D6]DMSO): δ=170.7, 164.6, 164.0, 162.8, 162.0, 142.2, 141.8, 135.9, 133.2, 132.3, 129.2, 128.7, 122.0, 118.8, 118.6, 69.3, 69.2, 41.4, 38.1, 35.7, 35.5, 33.5, 31.5, 31.2, 30.4, 30.3, 29.6, 29.4, 24.2, 19.5, 13.7. 2: IR (KBr):
max=3307, 2949, 2862, 1658, 1620, 1526, 1435, 1253, 1170, 1030, 783; 1H NMR (400 MHz, [D6]DMSO): δ=8.1 (br., 4 H), 7.82 (s, 2 H), 7.78 (s, 2 H), 7.47 (s, 2 H), 7.43 (s, 2 H), 7.31 (s, 2 H), 7.27 (s, 2 H), 3.62 (br. s, 8 H), 3.35 (br. s, 7 H), 3.10 (br. s, 8 H), 2.6–2.2 (br., 8 H), 1.98 (br., 4 H), 1.89 (br., 4 H), 1.76 (s, 18 H), 1.72 (s, 18 H), 1.60 (br. m, 4 H), 1.28 (s, 18 H); 13C NMR (100 MHz, [D6]DMSO): δ=171.7, 165.3, 164.7, 163.5, 162.6, 142.8, 142.4, 136.6, 133.9, 129.9, 129.5, 122.3, 119.4, 119.2, 70.1, 70.0, 42.0, 39.2, 36.6, 36.4, 34.3, 32.3, 31.2, 31.1, 30.4, 30.3, 25.1; MS (FAB) of the corresponding CoII complex: 1456 [M+Na]+ (calcd exact mass: 1433.76).
- 13 Experimental procedure for the kinetic experiments: 10 mL vials were charged with a stir bar and 12.5 μmol (referring to Co) catalyst 1 b, 2, 4-Co-PAMAM, 8-Co-PAMAM, or 16-Co-PAMAM. The catalysts were dissolved in THF (4.00 mL), then (rac)-1,2-epoxyhexane (3.00 mL, 25 mmol) and bromobenzene (200 μL; as an internal standard) were added to the dark brown solution. After the mixture had been stirred for 1 h at 4 °C, water (250 μL) was added. Reaction conversion was monitored by GC analysis (HP-5 column) of 20 μL aliquots withdrawn periodically from the reaction mixture.