New and Selective Transition Metal Catalyzed Reactions of Allenes
A. Stephen K. Hashmi Priv.-Doz. Dr.
Institut für Organische Chemie Johann Wolfgang Goethe-Universität Frankfurt Marie-Curie-Strasse 11, 60439 Frankfurt am Main (Germany) Fax: (+49) 69-798-29464
Search for more papers by this authorA. Stephen K. Hashmi Priv.-Doz. Dr.
Institut für Organische Chemie Johann Wolfgang Goethe-Universität Frankfurt Marie-Curie-Strasse 11, 60439 Frankfurt am Main (Germany) Fax: (+49) 69-798-29464
Search for more papers by this authorAbstract
In the past decade transition metal catalyzed reactions of allenes have become increasingly important. A new principle common in many of these reactions is the presence of functional groups on the carbon atom next to the allene unit which allows a degree of selectivity (regio-, stereo-, chemo-, and positional selectivity, see picture) difficult to achieve by other methods.
References
- 1a B. L. Shaw, A. J. Stringer, Inorg. Chem. Acta Rev. 1973, 7, 1–10;
- 1b F. L. Bowden, R. Giles, Coord. Chem. Rev. 1976, 20, 81–106; for further efforts, see:
- 1c H. Siegel, H. Hopf, A. Germer, P. Binger, Chem. Ber. 1978, 111, 3112–3118;
- 1d G. Erker, Methoden Org. Chem. (Houben-Weyl) 4th ed, 1952–, Vol. E18, 1986, pp. 870–873 and 882–883.
- 2 For selected examples and additional references, see: L. Besson, J. Goré, B. Cazes, Tetrahedron Lett. 1995, 36, 3853–3856; W.-J. Xiao, G. Vasapollo, H. Alper, J. Org. Chem. 1998, 63, 2609–2612; R. C. Larock, Y. He, W. W. Leong, X. Han, M. D. Refvik, J. M. Zenner, J. Org. Chem. 1998, 63, 2154–2160; T. Sudo, N. Asao, V. Gevorgyan, Y. Yamamoto, J. Org. Chem. 1999, 64, 2494–2499; S. Kacker, A. Sen, J. Am. Chem. Soc. 1997, 119, 10 028–10 033; B. M. Trost, A. B. Pinkerton, J. Am. Chem. Soc. 1999, 121, 10 842–10 843; D. Hideura, H. Urabe, F. Sato, Chem. Commun. 1998, 271–272.
- 3 For selected examples and additional references, see: V. M. Arredondo, S. Tian, F. E. McDonald, T. J. Marks, J. Am. Chem. Soc. 1999, 121, 3633–3639; R. D. Walkup, G. Park, J. Am. Chem. Soc. 1990, 112, 1597–1603; R. Grigg, J. M. Sansano, Tetrahedron 1996, 52, 13441–13454; C. Jonasson, J.-E. Bäckvall, Tetrahedron Lett. 1998, 39, 3601–3604; D. N. A. Fox, D. Lathbury, M. F. Mahon, K. C. Molloy, G. Gallagher, J. Am. Chem. Soc. 1991, 113, 2652–2656; M. Lautens, C. Meyer, A. van Oeveren, Tetrahedron Lett. 1997, 38, 3833–3836; J. S. Prasad, L. S. Liebeskind, Tetrahedron Lett. 1988, 29, 4253–4256; F. P. J. T. Rutjes, K. C. M. F. Tjen, L. B. Wolf, W. F. J. Karstens, H. E. Schoemaker, H. Hiemstra, Org. Lett. 1999, 1, 717–720; K. M. Brummond, J. Lu, J. Am. Chem. Soc. 1999, 121, 5087–5088; for an example of a diastereoselective reaction, see: P. A. Wender, M. Fuji, C. O. Husfeld, J. A. Love, Org. Lett. 1999, 1, 137–139.
- 4a M. Murakami, K. Itami, Y. Ito, Angew. Chem. 1995, 107, 2943–2946; Angew. Chem Int. Ed. Engl. 1995, 34, 2691;
- 4b M. Murakami, K. Itami, Y. Ito, J. Am. Chem. Soc. 1996, 118, 11 672–11 673.
- 5a M. Murakami, K. Itami, Y. Ito, J. Am. Chem. Soc. 1993, 115, 5865–5866;
- 5b M. Murakami, K. Itami, Y. Ito, J. Am. Chem. Soc. 1999, 121, 4130–4135.
- 6 T. Mandai, J. Tsuji, Y. Tsujiguchi, S. Saito, J. Am. Chem. Soc. 1993, 115, 5865–5866.
- 7 M. S. Sigman, B. E. Eaton, J. Am. Chem. Soc. 1996, 118, 11 783–11 788.
- 8
M. Murakami, M. Ubukata, K. Itami, Y. Ito, Angew. Chem. 1998, 110, 2362–2364; Angew. Chem. Int. Ed. 1998, 37, 2248–2250.
10.1002/(SICI)1521-3757(19980817)110:16<2362::AID-ANGE2362>3.0.CO;2-X Web of Science® Google Scholar
- 9 M. Murakami, K. Itami, Y. Ito, J. Am. Chem. Soc. 1997, 119, 7163–7164.
- 10
M. Murakami, K. Itami, Y. Ito, Angew. Chem. 1998, 110, 3616–3619; Angew. Chem. Int. Ed. 1998, 37, 3418–3420.
10.1002/(SICI)1521-3757(19981217)110:24<3616::AID-ANGE3616>3.0.CO;2-F Web of Science® Google Scholar
- 11 M. Murakami, K. Itami, M. Ubukata, I. Tsuji, Y. Ito, J. Org. Chem. 1998, 63, 4–5.
- 12 M. Hayashi, T. Ohmatsu, Y.-P. Meng, K. Saigo, Angew. Chem. 1998, 110, 877–879; Angew. Chem. Int. Ed. 1998, 37, 837–839.
- 13 Y. Owada, T. Matsuo, N. Iwasawa, Tetrahedron 1997, 53, 11 069–11 086.
- 14 L.-I. Olsson, A. Claesson, Synthesis 1979, 743–745.
- 15 J. A. Marshall, K. G. Pinney, J. Org. Chem. 1993, 58, 7180–7184; J. A. Marshall, G. S. Bartley, E. M. Wallace, J. Org. Chem. 1996, 61, 5729–5735.
- 16 S. Ma, Z. Shi, J. Org. Chem. 1998, 63, 6387–6389.
- 17 I. Shimizu, T. Sugiura, J. Tsuji, J. Org. Chem. 1985, 50, 537–539.
- 18 S.-K. Kang, T. Yamaguchi, S.-J. Pyun, Y.-T. Lee, T.-G. Baik, Tetrahedron Lett. 1998, 39, 2127–2130; S. Ma, S. Zhao, J. Am. Chem. Soc. 1999, 121, 7943–7944.
- 19 H. Ohno, A. Toda, Y. Miwa, T. Taga, E. Osawa, Y. Yamaoka, N. Fujii, T. Ibuka, J. Org. Chem. 1999, 64, 2992–2993; see also A. Claesson, C. Sahlberg, K. Luthman, Acta Chem. Scand. B 1979, 33, 309–310.
- 20 Y. Imada, G. Vasapollo, H. Alper, J. Org. Chem. 1996, 61, 7982–7983.
- 21 M. S. Sigman, C. E. Kerr, B. E. Eaton, J. Am. Chem. Soc. 1993, 115, 7545–7546; M. S. Sigman, B. E. Eaton, J. D. Heise, C. P. Kubiak, Organometallics 1996, 15, 2829–2832; for the analogous allenyl imines: M. S. Sigman, B. E. Eaton, J. Org. Chem. 1994, 59, 7488–7491.
- 22 J. A. Marshall, E. D. Robinson, J. Org. Chem. 1990, 55, 3450–3451; J. A. Marshall, G. S. Bartley, J. Org. Chem. 1994, 59, 7169–7171.
- 23
A. S. K. Hashmi, Angew. Chem. 1995, 107, 1749–1751; Angew. Chem. Int. Ed. Engl. 1995, 34, 1581–1583;
10.1002/ange.19951071522 Google ScholarA. S. K. Hashmi, T. L. Ruppert, T. Knöfel, J. W. Bats, J. Org. Chem. 1997, 62, 7295–7304.
- 24
A. S. K. Hashmi, L. Schwarz, J.-H. Choi, T. M. Frost, Angew. Chem. 2000, 112, 2382–2385; Angew. Chem. Int. Ed. 2000, 39, 2285–2288.
10.1002/1521-3757(20000703)112:13<2382::AID-ANGE2382>3.0.CO;2-R Google Scholar
- 25 A. S. K. Hashmi, L. Schwarz, M. Bolte, Tetrahedron Lett. 1998, 39, 8969–8972.