Spectroscopy of the Formation of Microporous Transition Metal Ion Containing Aluminophosphates under Hydrothermal Conditions
Bert M. Weckhuysen Dr. ir.
Centrum voor Oppervlaktechemie en Katalyse, K.U.Leuven Kardinaal Mercierlaan 92, 3001 Heverlee-Leuven (Belgium) Fax: (+32) 16-321998
Search for more papers by this authorDavid Baetens ir.
Centrum voor Oppervlaktechemie en Katalyse, K.U.Leuven Kardinaal Mercierlaan 92, 3001 Heverlee-Leuven (Belgium) Fax: (+32) 16-321998
Search for more papers by this authorRobert A. Schoonheydt Prof. Dr. ir.
Centrum voor Oppervlaktechemie en Katalyse, K.U.Leuven Kardinaal Mercierlaan 92, 3001 Heverlee-Leuven (Belgium) Fax: (+32) 16-321998
Search for more papers by this authorBert M. Weckhuysen Dr. ir.
Centrum voor Oppervlaktechemie en Katalyse, K.U.Leuven Kardinaal Mercierlaan 92, 3001 Heverlee-Leuven (Belgium) Fax: (+32) 16-321998
Search for more papers by this authorDavid Baetens ir.
Centrum voor Oppervlaktechemie en Katalyse, K.U.Leuven Kardinaal Mercierlaan 92, 3001 Heverlee-Leuven (Belgium) Fax: (+32) 16-321998
Search for more papers by this authorRobert A. Schoonheydt Prof. Dr. ir.
Centrum voor Oppervlaktechemie en Katalyse, K.U.Leuven Kardinaal Mercierlaan 92, 3001 Heverlee-Leuven (Belgium) Fax: (+32) 16-321998
Search for more papers by this authorThis work was supported by the Fonds voor Wetenschappelijk Onderzoek-Vlaanderen (F.W.O) and the Geconcerteerde Onderzoeksactie (G.O.A.) of the Flemish Government. B.M.W. thanks the FWO for a postdoctoral fellowship at K.U.Leuven. The authors also thank Dr. F. E. Mabbs and Dr. D. Collison of the EPRSRC c.w. EPR Service Centre of the University of Manchester (UK) for using their ESR spectrometer equipped with liquid He cryostat.
Abstract
The coordination environment of transition metal ions can be monitored during the synthesis of molecular sieves at high pressures and temperatures by using the apparatus shown, which allows the measurement of diffuse reflectance and electron spin resonance spectra in situ. The spectroscopic data obtained allow a better understanding of the hydrothermal crystallization process of CoAPO-5 molecular sieves in terms of the coordination chemistry of Co2+ in the synthesis gel.
References
- 1 B. M. Lok, T. R. Cannon, C. A. Messina, Zeolites 1983, 3, 282.
- 2 M. E. Davis, R. F. Lobo, Chem. Mater. 1992, 4, 756.
- 3
D. E. Akporiaye, I. M. Dahl, A. Karlsson, R. Wendelbo, Angew. Chem. 1998, 110, 629; Angew. Chem. Int. Ed. 1998, 37, 609;
10.1002/(SICI)1521-3757(19980302)110:5<629::AID-ANGE629>3.0.CO;2-4 Google ScholarJ. Klein, C. W. Lehmann, H-W. Schmidt, W. F. Maier, Angew. Chem. 1998, 110, 3557; Angew. Chem. Int. Ed. 1998, 37, 3369;10.1002/(SICI)1521-3757(19981217)110:24<3557::AID-ANGE3557>3.0.CO;2-7 Web of Science® Google ScholarK. Choi, D. Gardner, N. Hilbrandt, T. Bein, Angew. Chem. 1999, 111, 3070; Angew. Chem. Int. Ed. 1999, 38, 2891.10.1002/(SICI)1521-3757(19991004)111:19<3070::AID-ANGE3070>3.0.CO;2-9 Web of Science® Google Scholar
- 4 X. Gao, B. M. Weckhuysen, R. A. Schoonheydt, Microporous Mesoporous Mater. 1999, 27, 75; L. Frunza, P. Van Der Voort, E. F. Vansant, R. A. Schoonheydt, B. M. Weckhuysen, Microporous Mesoporous Mater., accepted.
- 5 W. R. Moser, J. E. Cnossen, A. W. Wang, S. A. Krouse, J. Catal. 1985, 95, 21.
- 6 M. Haouas, C. Gerardin, F. Taulelle, C. Estournes, T. Loiseau, G. Férey, J. Chim. Phys. 1998, 95, 302; F. Taulelle, M. Haouas, C. Gerardin, C. Estournes, T. Loiseau, G. Férey, Colloids and Surfaces A 1999, 158, 299.
- 7
P. Norby, A. N. Christensen, J. C. Hanson, Stud. Surf. Sci. Catal. 1994, 84, 179;
G. Sankar, J. M. Thomas, F. Rey, G. N. Greaves, Chem. Commun. 1995, 2549;
A. T. Davies, G. Sankar, C. R. Catlow, S. M. Clark, J. Phys. Chem. B 1997, 101, 10 115;
A. N. Christensen, T. R. Jensen, P. Norby, J. C. Hanson, Chem. Mater. 1998, 10, 1688;
C. L. Cahill, Y. Ko, J. C. Hanson, K. Tan, J. B. Parise, Chem. Mater. 1998, 10, 1453;
M. Lindén, S. A. Schunk, F. Schüth, Angew. Chem. 1998, 110, 871; Angew. Chem. Int. Ed. 1998, 37, 821;
10.1002/(SICI)1521-3757(19980316)110:6<871::AID-ANGE871>3.0.CO;2-0 Google ScholarA. R. Overweg, de Haan, P. C. M. M. Magusin, R. A. van Santen, G. Sankar, J. M. Thomas, Chem. Mater. 1999, 11, 1680; R. J. Francis, S.O'Brien, A. M. Fogg, P. S. Halasyamani, D. O'Hare, T. Loiseau, G. Férey, J. Am. Chem. Soc. 1999, 121, 1002.
- 8 G. Sankar, J. M. Thomas, F. Rey, G. N. Greaves, Chem. Commun. 1995, 2549; F. Rey, G. Sankar, J. M. Thomas, P. A. Barret, D. W. Lewis, C. R. A. Catlow, G. N. Greaves, S. M. Clarck, Chem. Mater. 1995, 7, 1435; A. R. Overweg, J. W. de Haan, P. C. M. M. Magusin, R. A. van Santen, G. Sankar, J. M. Thomas, Chem. Mater. 1999, 11, 1680.
- 9
P. P. E. A. de Moor, T. P. M. Beelen, R. A. van Santen, K. Tsuji, M. E. Davis, Chem. Mater. 1999, 11, 36;
P. P. E. A. de Moor, T. P. M. Beelen, R. A. van Santen, J. Phys. Chem. B 1999, 103, 1639;
P. P. E. A. de Moor, T. P. M. Beelen, B. U. Komanschek, L. W. Beck, P. Wagner, M. E. Davis, R. A. van Santen, Chem. Eur. J. 1999, 5, 2083.
10.1002/(SICI)1521-3765(19990702)5:7<2083::AID-CHEM2083>3.0.CO;2-F CAS Web of Science® Google Scholar
- 10
Recent reviews on this subject: I. W. C. E. Arends, R. A. Scheldon, M. Wallau, U. Schuchardt, Angew. Chem. 1997, 109, 1190; Angew. Chem. Int. Ed. 1997, 36, 1144;
10.1002/ange.19971091104 Google ScholarB. M. Weckhuysen, R. Ramachandra Rao, J. A. Martens, R. A. Schoonheydt, Eur. J. Inorg. Chem. 1999, 565;10.1002/(SICI)1099-0682(199904)1999:4<565::AID-EJIC565>3.0.CO;2-Y CAS Web of Science® Google ScholarM. Hartmann, L. Kevan, Chem. Rev. 1999, 99, 635.
- 11 A. B. P. Lever, Inorganic Electronic Spectroscopy, Elsevier, Amsterdam, 1984.
- 12 A tetragonal distortion of an octahedral complex leads to the splitting of the 4T1g(P) level in a 4A2g and 4Eg level. This splitting gives rise to two transitions, 4T1g(F)→4A2g(P) and 4T1g(F)→4Eg(P), which are located at 450 and 538 nm, respectively, for, for example, [Co(H2O)4Cl2] (see ref. [11]). We are only able to observe the 4T1g(F)→4A2g(P) transition of the [CoO4(H2O)2] species as a shoulder at 470 nm and the 4T1g(F)→4Eg(P) transition must be overshadowed by the 4T1g(F)→4Eg(P) transition at 521 nm of the more abundant [Co(H2O)6]2+ species in the synthesis gel. Although [CoOx(H2O)6−x] (with x=1–3) intermediates can also be formed, only the most stable tetragonally coordinated Co2+ species is experimentally observed.
- 13
R. A. Schoonheydt, R. De Vos, J. Pelgrims, H. Leeman in Zeolites: Facts, Figures, Future ( ), Elsevier, Amsterdam, 1989, p. 559;
10.1016/S0167-2991(08)61753-X Google ScholarA. A. Verberckmoes, B. M. Weckhuysen, R. A. Schoonheydt, Microporous Mesoporous Mater. 1998, 22, 165.
- 14 M. W. Makinen, L. C. Kuo, M. B. Yim, G. B. Wells, J. M. Fukujama, J. E. Kim, J. Am. Chem. Soc. 1985, 107, 5245; M. W. Makinen, L. C. Kuo, M. B. Yim, G. B. Wells, J. M. Fukujama, J. E. Kim, J. Am. Chem. Soc. 1985, 107, 5245.
- 15 B. M. Weckhuysen, A. A. Verberckmoes, M. G. Uytterhoeven, F. E. Mabbs, D. Collison, E. de Boer, R. A. Schoonheydt, J. Phys. Chem. B 2000, 104, 37.
- 16 F. Basolo, R. G. Pearson, Mechanisms of Inorganic Reactions, A study of metal complexes in solution, 2nd ed., Wiley, New York, 1967.
- 17 The pH of the initial gel at 25 °C, as measured with a Consort P514 pH meter, was equal to 2 and this value increased to around 3.5 after heating the synthesis gel to 175 °C. After synthesis the pH was around 7. In this pH range, the dominant species in aqueous solutions are [Co(H2O)6]2+ and H2PO4− (N. N. Greenwood, A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1984). Importantly, in view of the work of Gerardin et al. ( C. Gerardin, M. In, L. Allouche, M. Haouas, F. Taulelle, Chem. Mater. 1999, 11, 1285) the reported pH values have to be taken with caution.
- 18 F. E. Mabbs, D. Collison, Electron Paramagnetic Resonance of d Transition Metal Compounds, Elsevier, Amsterdam, 1992.