Through-Space Exciton Coupling and Multimodal Na+/K+ Sensing Properties of Calix[4]arenecrowns with the Thienylene Analogue of para-Terphenoquinone as Chromophore
Kazuko Takahashi Prof. Dr.
Center for Interdisciplinary Research Tohoku University Sendai 980-8578 (Japan) Fax: (+81) 22-217-7810
Search for more papers by this authorAtsushi Gunji Dr.
Department of Chemistry, Graduate School of Science Tohoku University Sendai 980-8578 (Japan)
Search for more papers by this authorDominique Guillaumont Dr.
Yokohama Research Center Mitsubishi Chemical Corporation Yokohama 227-8502 (Japan)
Search for more papers by this authorFabio Pichierri Dr.
Yokohama Research Center Mitsubishi Chemical Corporation Yokohama 227-8502 (Japan)
Search for more papers by this authorShinichiro Nakamura Dr.
Yokohama Research Center Mitsubishi Chemical Corporation Yokohama 227-8502 (Japan)
Search for more papers by this authorKazuko Takahashi Prof. Dr.
Center for Interdisciplinary Research Tohoku University Sendai 980-8578 (Japan) Fax: (+81) 22-217-7810
Search for more papers by this authorAtsushi Gunji Dr.
Department of Chemistry, Graduate School of Science Tohoku University Sendai 980-8578 (Japan)
Search for more papers by this authorDominique Guillaumont Dr.
Yokohama Research Center Mitsubishi Chemical Corporation Yokohama 227-8502 (Japan)
Search for more papers by this authorFabio Pichierri Dr.
Yokohama Research Center Mitsubishi Chemical Corporation Yokohama 227-8502 (Japan)
Search for more papers by this authorShinichiro Nakamura Dr.
Yokohama Research Center Mitsubishi Chemical Corporation Yokohama 227-8502 (Japan)
Search for more papers by this authorThis work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.
Abstract
Chromogenic and electrochemical recognition are combined in the calix[4]arenecrown-4 1: 1) Conformational changes upon complexation of Na+ or K+ influence the through-space exciton coupling between the two diametrically arranged thienylene analogues of p-terphenoquinone used as the chromophores, and a color change results. 2) Complexation also causes an anodic shift in the oxidation and reduction potentials of 1.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2000/z14276_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1
C. D. Gutsche, Calixarenes, The Royal Society of Chemistry, Cambridge, 1989;
V. Böhmer, Angew. Chem. 1995, 107, 785–818; Angew. Chem. Int. Ed. Engl. 1995, 34, 713–745;
10.1002/ange.19951070704 Google ScholarS. Shinkai, Tetrahedron 1993, 49, 8933–8968.
- 2 Y. Kubo, S. Tokita, Y. Kojima, Y. T. Osano, T. Matsuzaki, J. Org. Chem. 1996, 61, 3758–3765; A. M. King, C. P. Moore, K. R. S. A. Sandanayake, I. O. Sutherland, J. Chem. Soc. Chem. Commun. 1992, 582–584; S. Shinkai, K. Araki, J. Shibata, D. Tsugawa, O. Manabe, Chem. Lett. 1989, 931–934.
- 3a M. G. Kaifer, P. A. Reddy, C. D. Gutsche, L. Echegoyen, J. Am. Chem. Soc. 1994, 116, 3580–3587;
- 3b P. Beer, Z. Chen, M. G. B. Drew, P. A. Gale, J. Chem. Soc. Chem. Commun. 1994, 2207–2208;
- 3c H. Yamamoto, K. Ueda, H. Suenaga, T. Sakaki, S. Shinkai, Chem. Lett. 1996, 39–40.
- 4 A. Harriman, M. Hissler, P. Jost, G. Wipff, R. Ziessel, J. Am. Chem. Soc. 1999, 121, 14–27.
- 5 K. Takahashi, T. Suzuki, K. Akiyama, Y. Ikegami, Y. Fukazawa, J. Am. Chem. Soc. 1991, 113, 4576–4583; K. Takahashi, Pure Appl. Chem. 1993, 65, 127–134.
- 6 N. Harada, H. Uda, J. Chem. Soc. Chem. Commun. 1982, 230–232; N. Harada, K. Nakanishi, Circular Dichroic Spectroscopy—Exciton Coupling in Organic Stereochemistry, University Science Books, Mill Valley, CA, 1983, pp. 88–91, 309–318.
- 7 Selective Na+ or K+ recognition is a very important ability for ionophores with regard to biological chemistry; for example, see A. Casnai, A. Pochini, R. Ungaro, C. Bocchi, F. Ugozzoli, R. J. M. Egberink, H. Struijk, R. Lugtenberg, F. de Jong, D. N. Reinhoudt, Chem. Eur. J. 1996, 2, 436–445.
- 8 A. Gunji, K. Takahashi, Synth. Commun. 1998, 28, 3933–3941.
- 9
Compounds 1–4 were synthesized as 1:1 mixtures of isomers having different orientations of the sulfur atom of the thienylene analogue(s) of p-terphenoquinone, since four different tBu signals and four different signals for the quinoid ring protons α to CH2 for 1 and four different thienyl ring proton signals for 2 were observed in the 1H NMR spectra (600 MHz, CDCl3, 25 °C, TMS). All spectral data were recorded on the mixtures. 1: m.p. 128–129 °C; 1H NMR: δ=1.340, 1.342, 1.36, 1.37 (four singlets, 9 H each, tBu), four pairs of doublets at 3.58, 3.59, 3.61, 3.63 (HA, HA′) and at 3.81, 3.84, 3.84, 3.87 (HB, HB′, 2J(H,H)=14 Hz); IR (KBr):
=1590 cm−1 (C=O); UV/Vis (MeCN): λmax (lg ε)=579 (5.02), 540 (5.08), 496 sh (4.59), 349 (4.24), 332 (4.09), 284 (4.18), 273 (4.20), 262 (4.18); FAB-MS: m/z (%): 1129 (100) [M++Na+], 1108 (61) [M++2], 1106 (23) [M+]. 2: m.p. 223–225 °C; 1H NMR: δ=1.37, 1.38, (two singlets, 18 H each, tBu), 3.36 and 3.40 (HA, HA′, 2J(H,H)=14 Hz), 3.85–4.00 (HB, HB′); IR (KBr):
=1593 cm−1 (C=O); UV/Vis (MeCN): λmax (lg ε)=577 (5.06), 542 (5.05), 499 sh (4.63), 350 (4.26), 336 sh (4.19), 298 (4.06), 283 (4.09), 274 (4.11); FAB-MS: m/z (%): 1154 (100) [M++4], 1153 (54) [M++3], 1150 (5) [M+]. 3: m.p. 240–241 °C; 1H NMR: δ=1.32, (s, 9 H, tBu), 1.37, (s, 9 H, tBu), two pairs of doublets at 2.93 or 2.96 (HA) and 4.44 or 4.47 (HB) (2J(H,H)=16 Hz), two pairs of doublets at 3.24 and 3.24 (HA′) and 4.45 or 4.46 (HB′) (2J(H,H)=14 Hz); IR (KBr):
=1589 cm−1 (C=O); UV/Vis (MeCN): λmax (lg ε)=568 (4.91), 488 sh (4.07), 347 (3.97), 334 sh (3.89), 281 sh (3.83), 273 (3.86), 263 (3.84); FAB-MS: m/z (%): 873 (39) [M++Na+], 852 (100) [M++2], 850 (8) [M+]. 4: m.p. 252–253 °C; 1H NMR: δ=1.37 (s, 9 H, tBu), 1.39 (s, 9 H, tBu), four pairs of doublets of the methylene protons at 3.48 (HA1), 3.43 (HA2) (2J(H,H)=12 Hz), 3.74–3.81 (HB1, HB2, CH3CH2CH2), 3.09 and 3.10 (HA1′, HA2′), 4.08 or 4.09 (HB1′, HB2′) (2J(H,H)=13 Hz); IR (KBr):
=1591 cm−1 (C=O); UV/Vis (MeCN): λmax (lg ε)=566 (4.74), 509 sh (4.28), 350 (3.73), 334 (3.65), 294 (3.66), 277 (3.77), 272 (3.78); FAB-MS: m/z (%): 836 (100) [M++2], 834 (7) [M+].
- 10 Single crystals of 4: monoclinic, space group P21/n, Z=4, a=15.684(4), b=10.589(4), c=29.278(4) Å, β=96.52(2)°, V=4830(2) Å3 (R=0.114 and Rw=0.140 for 2393 observed reflections with I>3.00 σ(I)). Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-137583. Copies of the data can be obtained free of charge on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK (fax: (+44) 1223-336-033; e-mail: [email protected]).
- 11 Compounds 1–4 do not exist as mixtures of different conformers. This was proved by NMR spectroscopic analyses with DEPT, HMQC, HMBC, 1H-1H COSY, and 13C-1H COSY methods.
- 12 Gaussian 94, Revision C.3: M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanav, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
- 13 The MM calculations were performed with the Cerius 2 graphics package by using the universal force field (UFF).
- 14 J. E. Ridley, M. C. Zerner, Theoret. Chim. Acta 1973, 32, 111; A. D. Bacon, M. C. Zerner, Theoret. Chim. Acta 1979, 53, 21. The Na+ ion was taken into account in the calculations of the complexed forms. The CI calculation is composed of all single excitations from the 29 highest energy occupied molecular orbitals to the 29 lowest energy unoccupied orbitals.
- 15 In addition to the calculated absorption bands listed in Table 1, a new, forbidden transition, assignable to the weak absorption band at around 630 nm (Figure 2), resulted for 1-Na+ and 3-Na+ only when the Na+ ion was taken into account in the INDO/s calculation. Therefore, this weak band may originate from the ion–dipole interaction between the encapsulated alkali metal cation and the carbonyl groups of the heteroquinones.
- 16 Stable cone conformations were optimized for both 3 and 3-Na+ with the same calculation method as for 1 and 1-Na+.