A Highly Conductive Macrocycle-Linked Metallophthalocyanine Polymer
Richard P. Kingsborough
Department of Chemistry and Center for Material Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: (+1) 617-253-8929
Search for more papers by this authorTimothy M. Swager Prof.
Department of Chemistry and Center for Material Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: (+1) 617-253-8929
Search for more papers by this authorRichard P. Kingsborough
Department of Chemistry and Center for Material Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: (+1) 617-253-8929
Search for more papers by this authorTimothy M. Swager Prof.
Department of Chemistry and Center for Material Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 (USA) Fax: (+1) 617-253-8929
Search for more papers by this authorFunding from the Office of Naval Research is gratefully acknowledged. This work was supported in part by the MRSEC Program of the National Science Foundation under award number DMR 98–08941.
Abstract
A macrocycle-linked polymer architecture that involves thiophene linkages between the phthalocyanine rings (see picture) has been found to have conductivities three orders of magnitude higher than previously investigated macrocycle-linked materials. Rigid three-dimensional iptycene scaffolds were used to prevent aggregation of the macrocycles, and yield highly soluble monomers with a cleft around the axial coordination sites of the metal center.
Supporting Information
Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2000/z14528_s.pdf or from the author.
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 R. A. Collins, K. A. Mohamed, J. Phys. D 1988, 21, 154.
- 2 M. Hanack, A. Datz, R. Fay, K. Fischer, U. Keppeler, J. Koch, J. Metz, M. Metzger, O. Schneider, H. Schulze in Handbook of Conducting Polymers ( ), Marcel Dekker, New York, 1986, p. 133.
- 3 M. Hanack, S. Deger, A. Lange, Coord. Chem. Rev. 1988, 83, 115.
- 4 T. J. Marks, Science 1985, 7, 881.
- 5 T. J. Marks, Angew. Chem. 1990, 102, 886; Angew. Chem. Int. Ed. Engl. 1990, 29, 857.
- 6 B. M. Hoffman, J. A. Ibers, Acc. Chem. Res. 1983, 16, 15.
- 7 M. A. Díaz-García, I. Ledoux, J. A. Duro, T. Torres, F. Agulló-López, J. Zyss, J. Phys. Chem. 1994, 98, 8761.
- 8 J. Vacus, P. Doppelt, J. Simon, G. Memetzidis, J. Mater. Chem. 1992, 2, 1065.
- 9 J. A. Duro, G. de la Torre, J. Barbera, J. L. Serrano, T. Tores, Chem. Mater. 1996, 8, 1061.
- 10 D. M. Knawby, T. M. Swager, Chem. Mater. 1997, 9, 535.
- 11 G. C. Bryant, M. J. Cook, T. G. Ryan, A. J. Thorne, J. Chem. Soc. Chem. Commun. 1995, 467.
- 12 C. Piechocki, J. Simon, A. Skoulios, D. Guillon, P. Weber, J. Am. Chem. Soc. 1982, 104, 5245.
- 13a Phthalocyanines: Properties and Applications, Vol. 1–4 ( ), VCH, New York, 1989;
- 13b M. B. McKeown, Phthalocyanine Materials: Synthesis, Structure, and Function, Cambridge University Press, Cambridge, 1998.
- 14 R. P. Kingsborough, T. M. Swager, Prog. Inorg. Chem. 1999, 48, 123.
- 15 M. Hanack, M. Hees, P. Stihler, G. Winter, L. R. Subramanian in Handbook of Conducting Polymers ( ), Marcel Dekker, New York, 1998, p. 381.
- 16 M. Hanack, M. Lang, Adv. Mater. 1994, 6, 819.
- 17 U. Dreschler, M. Hanack in Comprehensive Supramolecular Chemistry, Vol. 9 ( ), Elsevier, New York, 1996, p. 283.
- 18 S. Venkatachalam, V. N. Krishnamurthy, Indian. J. Chem. Sect. A 1994, 33, 506.
- 19 S. Venkatachalam, K. V. C. Rao, P. T. Manoharan, J. Polym. Sci. Part B 1994, 32, 37.
- 20 H. S. Nalwa, Polym. Commun. 1990, 31, 232.
- 21 B. N. Achar, G. M. Fohlen, J. A. Parker, J. Polym. Sci. Polym. Chem. Ed. 1982, 20, 1785.
- 22a R. P. Kingsborough, T. M. Swager, Adv. Mater. 1998, 10, 1003;
- 22b R. P. Kingsborough, T. M. Swager, J. Am. Chem. Soc. 1999, 121, 8825.
- 23 S. S. Zhu, T. M. Swager, Adv. Mater. 1996, 8, 497.
- 24 S. S. Zhu, P. J. Carroll, T. M. Swager, J. Am. Chem. Soc. 1996, 118, 8713.
- 25 S. S. Zhu, T. M. Swager, J. Am. Chem. Soc. 1997, 119, 12 568.
- 26 S. S. Zhu, R. P. Kingsborough, T. M. Swager, J. Mater. Chem. 1999, 9, 2123.
- 27 T. P. Forsyth, D. B. G. Williams, A. G. Montalban, C. L. Stern, A. G. M. Barrett, B. M. Hoffman, J. Org. Chem. 1998, 63, 331.
- 28a J.-S. Yang, T. M. Swager, J. Am. Chem. Soc. 1998, 120, 5321;
- 28b J.-S. Yang, T. M. Swager, J. Am. Chem. Soc. 1998, 120, 11 864.
- 29 B. D. Rihter, M. D. Bohorquez, M. A. J. Rodgers, M. E. Kenney, Photochem. Photobiol. 1992, 55, 677.
- 30 S. M. Marcuccio, P. I. Svirskaya, S. Greenberg, A. B. P. Lever, C. Leznoff, K. B. Tomer, Can. J. Chem. 1985, 63, 3057.
- 31 G. P. Kittlesen, H. S. White, M. S. Wrighton, J. Am. Chem. Soc. 1984, 106, 7389.
- 32 E. W. Paul, A. J. Ricco, M. S. Wrighton, J. Phys. Chem. 1985, 89, 1441.
- 33 J. W. Thackeray, H. S. White, M. S. Wrighton, J. Phys. Chem. 1985, 89, 5133.
- 34 D. Ofer, R. M. Crooks, M. S. Wrighton, J. Am. Chem. Soc. 1990, 112, 7869.
- 35 These in situ conductivity measurements have been established to provide conductivity values in accord (within a factor of 2) with other conducting polymers reported in the literature.
- 36 Unless noted all potentials are referenced to the Fc/Fc+ redox couple.