Asymmetric Synthesis of Phorboxazole B—Part I: Synthesis of the C20–C38 and C39–C46 Subunits
David A. Evans Prof.
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorVictor J. Cee
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorThomas E. Smith
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorDuke M. Fitch
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorPatricia S. Cho
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorDavid A. Evans Prof.
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorVictor J. Cee
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorThomas E. Smith
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorDuke M. Fitch
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorPatricia S. Cho
Department of Chemistry & Chemical Biology Harvard University Cambridge, MA 02138, USA, Fax: (+1) 617-495-1460
Search for more papers by this authorFinancial support was provided by the National Institutes of Health (GM-33328) and the National Science Foundation. An American Cancer Society Postdoctoral Fellowship to T.E.S. and an NSF Predoctoral Fellowship to V.J.C. are gratefully acknowledged. The NIH BRS Shared Instrumentation Grant Program 1-S10-RR04870 and the NSF (CHE 88-14019) are acknowledged for providing NMR facilities.
Abstract
Das antitumorwirksame marine Makrolid Phorboxazol B 1 wurde erstmals durch eine Totalsynthese hergestellt. Die Phorboxazole stehen stellvertretend für eine neue Strukturfamilie von Makroliden und gehören zu den cytostatisch wirksamsten Naturstoffen überhaupt: Sie hemmen das Wachstum von Tumorzellen bereits in nanomolaren Konzentrationen. Wichtige Kupplungen im Zuge der Synthese sind eine hochselektive, doppelt stereodifferenzierende Aldolreaktion, die Alkylierung eines metallierten Oxazols und eine durch einen Oxazolring begünstigte Wittig-Olefinierung. Nach der Makrocyclisierung wurde die noch fehlende Seitenkette durch eine hochselektive chelatkontrollierte Addition einer Alkenylmetallverbindung eingeführt.
References
- 1 Isolation and structure elucidation: a) P. A. Searle, T. F. Molinski, J. Am. Chem. Soc. 1995, 117, 8126–8131; P. A. Searle, T. F. Molinski, L. J. Brzezinski, J. W. Leahy, J. Am. Chem. Soc. 1996, 118, 9422–9423; T. F. Molinski, Tetrahedron Lett. 1996, 37, 7879–7880.
- 2 GI50 is defined as the concentration at which cell growth is inhibited by 50%. See ref. [1a] and [1b]. Phorboxazoles A and B display comparable biological activities, see ref. [1a].
- 3
Phorboxazole synthetic studies: a)
S. D. Rychnovsky,
C. R. Thomas,
Org. Lett.
2000,
2, 1217–1219;
G. Pattenden,
A. T. Plowright,
Tetrahedron Lett.
2000,
41, 983–986;
J. V. Schaus,
J. S. Panek,
Org. Lett.
2000,
2, 469–471;
P. Wolbers,
H. M. R. Hoffmann,
F. Sasse,
Synlett
1999,
11, 1808–1810;
10.1055/s-1999-2922 Google ScholarA. B. Smith III, P. R. Verhoest, K. P. Minbiole, J. J. Lim, Org. Lett. 1999, 1, 909–912; A. B. Smith III, K. P. Minbiole, P. R. Verhoest, T. J. Beauchamp, Org. Lett. 1999, 1, 913–916; P. Wolbers, A. M. Misske, H. M. R. Hoffmann, Tetrahedron Lett. 1999, 40, 4527–4530; D. A. Evans, V. J. Cee, T. E. Smith, K. J. Santiago, Org. Lett. 1999, 1, 87–90; P. Wolbers, H. M. R. Hoffmann, Synthesis 1999, 5, 797–802;10.1055/s-1999-3470 Google ScholarA. M. Misske, H. M. R. Hoffmann, Tetrahedron 1999, 55, 4315–5324; D. R. Williams, M. P. Clark, Tetrahedron Lett. 1999, 40, 2291–2294; D. R. Williams, M. P. Clark, M. A. Berliner, Tetrahedron Lett. 1999, 40, 2287–2290; P. Wolbers, H. M. R. Hoffmann, Tetrahedron 1999, 55, 1905–1914; S. D. Rychnovsky, Y. Hu, B. Ellsworth, Tetrahedron Lett. 1998, 39, 7271–7274; I. Paterson, E. A. Arnott, Tetrahedron Lett. 1998, 39, 7185–7188; G. Pattenden, A. T. Plowright, J. A. Tornos, T. Ye, Tetrahedron Lett. 1998, 39, 6099–6102; T. Ye, G. Pattenden, Tetrahedron Lett. 1998, 39, 319–322; F. Ahmed, C. J. Forsyth, Tetrahedron Lett. 1998, 39, 183–186; R. D. Cink, C. J. Forsyth, J. Org. Chem. 1997, 62, 5672–5673; C. S. Lee, C. J. Forsyth, Tetrahedron Lett. 1996, 37, 6449–6452; total synthesis of phorboxazole A: C. J. Forsyth, F. Ahmed, R. D. Cink, C. S. Lee, J. Am. Chem. Soc. 1998, 120, 5597–5598.
- 4
D. A. Evans,
D. M. Fitch,
Angew. Chem.
2000,
112, 2636–2640;
Angew. Chem. Int. Ed.
2000,
39, 2536–2540.
10.1002/1521-3773(20000717)39:14<2536::AID-ANIE2536>3.0.CO;2-U CAS PubMed Web of Science® Google Scholar
- 5 Abbreviations: dr=diastereomer ratio; TES = triethylsilyl; TPS = triphenylsilyl; TIPS = triisopropylsilyl; Ms = methanesulfonyl; Bn = benzyl; TMS = trimethylsilyl; DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene; DMF = N, N-dimethylformamide; DMAP = N, N-dimethylaminopyridine; LDA = lithium diisopropylamide; TMP = 2,2,6,6-tetramethylpiperidide; NBS = N-bromosuccinimide; Tr = trityl = triphenylmethyl; Ts=para-toluenesulfonyl; DIAD = diisopropylazodicarboxylate; THF = tetrahydrofuran; HMDS = hexamethyldisilazide; pyr = pyridine; TEA = triethylamine; DMSO = dimethyl sulfoxide; Tf = triflate = trifluoromethanesulfonyl.
- 6 D. A. Evans, M. C. Kozlowski, J. A. Murry, C. S. Burgey, K. R. Campos, B. T. Connell, R. J. Staples, J. Am. Chem. Soc. 1999, 121, 669–685.
- 7 D. A. Evans, M. D. Ennis, T. Le, N. Mandel, G. Mandel, J. Am. Chem. Soc. 1984, 106, 1154–1156.
- 8(a) D. L. Boger, T. T. Curran, J. Org. Chem. 1992, 57, 2235–2244; D. P. Provencal, C. Gardelli, J. A. Lafontaine, J. W. Leahy, Tetrahedron Lett. 1995, 36, 6033–6036.
- 9 The product ratio was determined by HPLC analysis (Zorbax, 4.6 × 150 mm, 5 μm silica gel; 3% iPrOH in CH2Cl2, flow rate = 1 mL min–1; Tr minor = 12.5 min; Tr major = 14.9 min).
- 10 For examples of β-ketoimide aldol reactions, see a) D. A. Evans, H. P. Ng, J. S. Clark, D. L. Rieger, Tetrahedron 1992, 48, 2127–2142; D. A. Evans, H. P. Ng, D. L. Rieger, J. Am. Chem. Soc. 1993, 115, 11446–11459.
- 11 D. A. Evans, K. T. Chapman, E. M. Carreira, J. Am. Chem. Soc. 1988, 110, 3560–3578.
- 12 Product ratio determined by 1H NMR analysis (500 MHz).
- 13 M. D. Lewis, J. K. Cha, Y. Kishi, J. Am. Chem. Soc. 1982, 104, 4976–4978.
- 14 For similar conditions employing ethylene glycol in place of methanol, see a) T. H. Chan, M. A. Brook, T. Chaly, Synthesis 1983, 203–205; ref. [4].
- 15 For a related reduction with Raney-Ni, see R. Bacardit, M. Moreno-Mañas, Tetrahedron Lett. 1980, 21, 551–554.
- 16 For reports of oxazole lithiation, see ref. [3h], and references therein.
- 17 A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1997, 119, 962–973; A. B. Smith III, S. M. Condon, J. A. McCauley, J. L. Leazer, Jr., J. W. Leahy, R. E. Maleczka, Jr., J. Am. Chem. Soc. 1995, 117, 5407–5408.
- 18 Conditions were adapted from: C. H. Heathcock, S. D. Young, J. P. Hagen, R. Pilli, U. Badertscher, J. Org. Chem. 1985, 50, 2095–2105.
- 19 D. B. Dess, J. C. Martin, J. Am. Chem. Soc. 1991, 113, 7277–7287.
- 20 ( R)-3-(triphenylmethyl)-1,2-epoxypropane is commercially available from Aldrich Chemical Co. and may also be prepared in 95% ee by Sharpless asymmetric epoxidation of allyl alcohol and in situ tritylation. Recrystallization provides the enantiomerically enriched compound: H. S. Hendrickson, E. K. Hendrickson, Chem. Phys. Lipids 1990, 53, 115–120.
- 21 ( E)-bis(tributylstannyl)ethylene was prepared by the following method: a) E. J. Corey, R. H. Wollenberg, J. Am. Chem. Soc. 1974, 96, 5581–5583; see also b) A. N. Nesmeyanov, A. E. Borisov, Dokl. Akad. Nauk SSSR 1967, 174, 96–99; For BF3 · OEt2-promoted organolithium additions to epoxides, see c) M. J. Eis, J. E. Wrobel, B. Ganem, J. Am. Chem. Soc. 1984, 106, 3693–3694.
- 22 Conditions were adapted from: R. Bellingham, K. Jarowicki, P. Kocienski, V. Martin, Synthesis 1996, 285–296.
- 23 Conditions were adapted from: ref. [3p]. For the synthesis of ( E)-3-iodo-2-methylprop-2-enal, see R. Baker, J. L. Castro, J. Chem. Soc. Perkin Trans. 1 1990, 47–65.
- 24 J. R. Parikh, W. E. von Doering, J. Am. Chem. Soc. 1967, 89, 5505–5507.
- 25 M. T. Reetz, Angew. Chem. 1984, 96, 542–555; Angew. Chem. Int. Ed. Engl. 1984, 23, 556–569.
- 26 After quenching the alkenyllithium with H2O, the selectivity of the lithium–halogen exchange was determined to be 20:1 (C39I:C46Br) by 1H NMR spectroscopy.
- 27 We are aware of few examples of this type of selective lithium-halogen exchange reaction. For a report involving bishalogenated arenes, see M. Kihara, M. Kashimoto, Y. Kobayashi, Tetrahedron 1992, 48, 67–78.
- 28 For an example of a chelation-controlled zincate addition, see D. R. Williams, W. S. Kissel, J. Am. Chem. Soc. 1998, 120, 11198–11199.
- 29 For an example of a chelation-controlled aluminate addition, see H. Imogai, Y. Petit, M. Larcheveque, Tetrahedron Lett. 1996, 37, 2573–2576.
- 30 A similar solvent effect has been noted in additions of alkenyl Grignard reagents to α-alkoxyaldehydes: G. E. Keck, M. A. Andrus, D. R. Romer, J. Org. Chem. 1991, 56, 417–420.
- 31 For the preparation of MgBr2 as a solution in Et2O/benzene, see M. Nakatsuka, J. A. Ragan, T. Sammakia, D. B. Smith, D. E. Uehling, S. L. Schreiber, J. Am. Chem. Soc. 1990, 112, 5583–5601.
Citing Literature
This is the
German version
of Angewandte Chemie.
Note for articles published since 1962:
Do not cite this version alone.
Take me to the International Edition version with citable page numbers, DOI, and citation export.
We apologize for the inconvenience.