Antimicrobial Surfaces
Maximilian Lackner, Josef Peter Guggenbichler,
Josef Peter Guggenbichler
AMiSTec GmbH & Co. KG, Koessen, Austria
Search for more papers by this authorMaximilian Lackner, Josef Peter Guggenbichler,
Josef Peter Guggenbichler
AMiSTec GmbH & Co. KG, Koessen, Austria
Search for more papers by this authorAbstract
The article contains sections titled:
1. | Introduction |
1.1. | Biofilm Formation |
1.2. | Biofouling |
2. | Definitions, Methods, and Standards |
3. | Measures Against Growth of Microorganisms on Surfaces |
3.1. | Adding a Biocide |
3.1.1. | Heavy Metals |
3.1.2. | Organic Biocides |
3.1.3. | Titanium Dioxide |
3.2. | Acidic Surfaces |
3.3. | Antimicrobial Polymers |
3.4. | Nanoparticles and Micro- and Nanostructured Surfaces |
3.5. | Combination of Organic and Inorganic Compounds |
3.6. | Hydrophilic Versus Hydrophobic Surfaces |
References
- 1 J.-L. Vincent, J. Rello, J. Marshall, E. Silva, A. Anzueto, C.D. Martin, R. Moreno, J. Lipman, C. Gomersall, Y. Sakr, K. Reinhart: “International Study of the Prevalence and Outcomes of Infection in Intensive Care Units”, J. Am. Med. Assoc. 302 (2009) no. 21, 2323–2329.
- 2 S. Ishimatsu, H. Miyamoto, H. Hori, I. Tanaka, S.-i. Yoshida: “Sampling and detection of Legionella pneumophila aerosols generated from an industrial cooling tower”, Ann. Occup. Hyg. 45 (2001) no. 6, 421–427.
- 3
G. Manivannan:
Disinfection and Decontamination: Principles, Applications and Related Issues,
1st ed.,
CRC Press,
Boca Raton
2007.
10.1201/9781420008456 Google Scholar
- 4 European Commission, Environment, http://ec.europa.eu/environment/biocides/ (accessed Jan 2013).
- 5 U.S. Environmental Protection Agency, Pesticides, http://www.epa.gov/pesticides/ (accessed Jan 2013).
- 6 S.F. van Vuuren: “Antimicrobial activity of South African medicinal plants”, J. Ethnopharmacol. 119 (2008) no. 3, 462–472.
- 7 M.M. Tajkarimi, S.A. Ibrahim, D.O. Cliver: “Antimicrobial herb and spice compounds in food”, Food Control 21 (2010) no. 9, 1199–1218.
- 8 World Health Organization, http://www.who.int/water_sanitation_health/hygiene/emergencies/fs2_27.pdf (accessed Jan 2013).
- 9 V. Lazar: “Quorum sensing in biofilms–How to destroy the bacterial citadels or their cohesion/power?”, Anaerobe 17 (2011) no. 6, 280–285.
- 10 I. Neria-González, E.T. Wang, F. Ramírez, J.M. Romero, C. Hernández-Rodríguez: “Characterization of bacterial community associated to biofilms of corroded oil pipelines from the southeast of Mexico”, Anaerobe 12 (2006) no. 3, 122–133.
- 11
T. Reg Bott:
“ Biofilms in Industry”, in
Industrial Biofouling,
1st. ed.,
Elsevier,
Amsterdam
2011, chap. 7,
pp. 181–201.
10.1016/B978-0-444-53224-4.10007-5 Google Scholar
- 12 N. Muthukumar, S. Maruthamuthu, N. Palaniswamy: “Water-soluble inhibitor on microbiologically influenced corrosion in diesel pipeline”, Colloids Surf., B 53 (2006) no. 2, 260–270.
- 13 Z.H. Dong, W. Shi, H.M. Ruan, G.A. Zhang: “Heterogeneous corrosion of mild steel under SRB-biofilm characterised by electrochemical mapping technique”, Corros. Sci. 53 (2011) no. 9, 2978–2987.
- 14 T. Warscheid, J. Braams: “Biodeterioration of stone: a review”, Int. Biodeterior. Biodegrad. 46 (2000) no. 4, 343–368.
- 15 D.J. Giannantonio, J.C. Kurth, K.E. Kurtis, P.A. Sobecky: “Effects of concrete properties and nutrients on fungal colonization and fouling”, Int. Biodeterior. Biodegrad. 63 (2009) no. 3, 252–259.
- 16 L.A. Bereschenko, H. Prummel, G.J.W. Euverink, A.J.M. Stams, M.C.M. van Loosdrecht: “Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems”, Water Res. 45 (2011) no. 2, 405–416.
- 17 N. Wisniewski, M. Reichert: “Methods for reducing biosensor membrane biofouling”, Colloids Surf., B 18 (2000) no. 3–4, 197–21.
- 18 T. Møretrø, E. Heir, K.R. Mo, O. Habimana, A. Abdelgani, S. Langsrud: “Factors affecting survival of Shigatoxin-producing Escherichia coli on abiotic surfaces”, Int. J. Food Microbiol. 138 (2010) no. 1–2, 71–77.
- 19 A. Rzeżutka, N. Cook: “Survival of human enteric viruses in the environment and food”, FEMS Microbiol. Rev. 28 (2004) no. 4, 441–453.
- 20 R. Howie, M.J. Alfa, K. Coombs: “Survival of enveloped and non-enveloped viruses on surfaces compared with other micro-organisms and impact of suboptimal disinfectant exposure”, J. Hospital Infection 69 (2008) no. 4, 368–376.
- 21 P. Espinal, S. Martí, J. Vila: “Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces”, J. Hospital Infection 80 (2012) no. 1, 56–60.
- 22 The Journal of Architectural Coatings, Paint and Coatings Industry News, Growth Catalyst: Report Projects Acceleration for Antimicrobial Market, April 6, 2012, http://www.durabilityanddesign.com/news/?fuseaction=view&id=7495 (accessed Jan 2013).
- 23 Standards, Beuth Verlag, http://www.beuth.de (accessed 10 June, 2013).
- 24 E. Goode, B. Keevil, Antimicrobial efficacy testing, 2012, http://www.copperinfo.co.uk/antimicrobial/downloads/acig/supply-chain-dec09/antimicrobial-testing-uni-southampton-goode.pdf (accessed Jan 2013).
- 25 M. Othman, H. San Loh, C. Wiart, T. Jin Khoo, K. Hon Lim, K. Nee Ting: “Optimal methods for evaluating antimicrobial activities from plant extracts”, J. Microbiol. Methods 84 (2011) no. 2, 161–166.
- 26 N. Tétault, H. Gbaguidi-Haore, X. Bertrand, R. Quentin, N. van der Mee-Marquet: “Biocidal activity of metalloacid-coated surfaces against multidrug-resistant microorganisms”, Antimicrobial Resistance and Infection Control 1 (2012) 35, http://www.aricjournal.com/content/pdf/2047-2994-1-35.pdf (accessed 10 June, 2013).
- 27 D.G. Maki, F. Jarrett, H.W. Sarafin: “A semiquantitative culture method for identification of catheter-related infection in the burn patient”, J. Surg. Res. 22 (1977) no. 5, 513–520.
- 28 C. Zollfrank, K. Gutbrod, P. Wechsler, J.P. Guggenbichler: “Antimicrobial activity of transition metal acid MoO3 prevents microbial growth on material surfaces”, Mat. Sci. Eng. C 32 (2012) no. 1, 47–54.
- 29 J.J. Reinosa, J.J. Romero, M.A. de la Rubia, A. del Campo, J.F. Fernández: “Inorganic hydrophobic coatings: Surfaces mimicking the nature”, Ceram. Int. 39 (2013) no. 3 2489–2495.
- 30 Y. Yin, C. Wang: “Water-repellent functional coatings through hybrid SiO2/HTEOS/CPTS sol on the surfaces of cellulose fibers”, Colloids Surf., A 417 (2013) no. 20, 120–125.
- 31 C. Díaz, A. Miñán, P.L. Schilardi, M. Fernández, L. de Mele: “Synergistic antimicrobial effect against early biofilm formation: micropatterned surface plus antibiotic treatment”, Int. J. Antimicrob. Agents 40 (2012) no. 3, 221–226.
- 32 A. Sanz de León, J. Rodríguez-Hernández, A.L. Cortajarena: “Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion”, Biomaterials 34 (2013) no. 5, pp. 1453–1460.
- 33 V.C. Kalia: “Quorum sensing inhibitors: An overview”, Biotechnol. Adv. 31 (2013) no. 2, 224–245.
- 34 C.T. Cuadrado-Silva, L. Castellanos, C. Arévalo-Ferro, O.E. Osorno: “Detection of quorum sensing systems of bacteria isolated from fouled marine organisms”, Biochem. Syst. Ecol. 46 (2013) 101–107.
- 35 K. Glinel, P. Thebault, V. Humblot, C.M. Pradier, T. Jouenne: “Antibacterial surfaces developed from bio-inspired approaches”, Acta Biomaterialia 8 (2012) no. 5, 1670–1684.
- 36 P. Widsten, C. Heathcote, A. Kandelbauer, G. Guebitz, G.S. Nyanhongo, E.N. Prasetyo, T. Kudanga: “Enzymatic surface functionalisation of lignocellulosic materials with tannins for enhancing antibacterial properties”, Process Biochem. 45 (2010) no. 7, 1072–1081.
- 37 J.S. Vrouwenvelder, M.C.M. Van Loosdrecht, J.C. Kruithof: “A novel scenario for biofouling control of spiral wound membrane systems”, Water Res. 45 (2011) 3890–3898.
- 38 A. Kugel, S. Stafslien, B.J. Chisholm: “Antimicrobial coatings produced by “tethering” biocides to the coating matrix: A comprehensive review”, Progr. Organic Coat. 72 (2011) no. 3, 222–252.
- 39 K. Jamuna-Thevi, S.A. Bakar, S. Ibrahim, N. Shahab, M.R.M. Toff: “Quantification of silver ion release, in vitro cytotoxicity and antibacterial properties of nanostuctured Ag-doped TiO2 coatings on stainless steel deposited by RF magnetron sputtering”, Vacuum 86 (2011) no. 3, 235–241.
- 40 C.J. Chung, H.I. Lin, J.L. He: “Antimicrobial efficacy of photocatalytic TiO2 coatings prepared by arc ion plating”, Surf. Coat. Technol. 202 (2007) no. 4–7, 1302–1307.
- 41 PRNewswire, Antimicrobial Coatings Market Is Expected To Reach USD 3.3 Billion Globally by 2018: Transparency Market Research, http://www.prnewswire.com/news-releases/antimicrobial-coatings-market-is-expected-to-reach-usd-33-billion-globally-by-2018-transparency-market-research-186912691.html (accessed Jan. 2013).
- 42 U. Samuel, J.P. Guggenbichler: “Prevention of catheter-related infections: the potential of a new nano-silver impregnated catheter”, Int. J. Antimicrob. Agents 23 (2004) Suppl. 1, 75–78.
- 43 L. Zhu, J. Elguindi, C. Rensing, S. Ravishankar: “Antimicrobial activity of different copper alloy surfaces against copper resistant and sensitive Salmonella enterica”, Food Microbiol. 30 (2012) no. 1, 303–310.
- 44 Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi: “Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni”, Appl. Environ. Microbiol. 77 (2011) no. 7, 2325, http://aem.asm.org/content/77/7/2325.full.pdf (accessed Jan 2013).
- 45 D. Carmona, P. Lalueza, F. Balas, M. Arruebo, J. Santamaría: “Mesoporous silica loaded with peracetic acid and silver nanoparticles as a dual-effect, highly efficient bactericidal agent”, Microporous Mesoporous Mat. 161 (2012) 84–90.
- 46 R.C. Spencer: “Novel methods for the prevention of infection of intravascular devices”, J. Hospital Infection 43 (1999) Suppl. 1, S127–S135.
- 47 G.J. James, R.J. Moore, M.J. Perry: “Impregnation of antibiotic into porous high density polyethylene material (Medpor®) using negative pressure”, Br. J. Oral Maxillofacial Surg. 44 (2006) no. 6, 556–557.
- 48 Y. Liu, X. Wang, F. Yang, X. Yang: “Excellent antimicrobial properties of mesoporous anatase TiO2 and Ag/TiO2 composite films”, Microporous Mesoporous Mater. 114 (2008) nos. 1–3, 431–439.
- 49 U. Sirimahachai, S. Phongpaichit, S. Wongnawa: “Evaluation of bactericidal activity of TiO2 photocatalysts: a comparative study of laboratory-made and commercial TiO2 samples”, Songklanakarin J. Sci. Technol. 31 (2009) no. 5, 517–525.
- 50 S. Ramya, S.D. Ruth Nithila, R.P. George, D. Nanda Gopala Krishna, C. Thinaharan, U. Kamachi Mudali: “Antibacterial studies on Eu–Ag codoped TiO2 surfaces, Ceram. Int. 39 (2013) no. 2, 1695–1705.
- 51 H. Bodaghi, Y. Mostofi, A. Oromiehie, Z. Zamani, B. Ghanbarzadeh, C. Costa, A. Conte, M.A. Del Nobile: “Evaluation of the photocatalytic antimicrobial effects of a TiO2 nanocomposite food packaging film by in vitro and in vivo tests”, LWT—Food Sci. Technol. 50 (2013) no. 2, 702–706.
- 52 C. Hauser, J. Wunderlich: “Antimicrobial packaging films with a sorbic acid based coating”, Procedia Food Sci. 1 (2011) 197–202.
- 53 M. Lackner, J.P. Guggenbichler, “ Antimicrobial Activity of Submicron Transition Metalloacids: An Innovative Concept to Generate Permanent Germfree Surfaces”, SAR 2011 Conference, Beijing/China, 3. Dezember 2011.
- 54 M. Lackner, S. Maninger, J.-P. Guggenbichler: “Saure Oberflächen als neuartige Kontaktbiozide”, Nachr. Chem. 61 (2013) no. 2, 112–115.
- 55 Plastics Europe, 2013, http://www.plasticseurope.org/documents/document/20101006091310-final_plasticsthefacts_28092010_lr.pdf (accessed Jan. 2013).
- 56 G. Seyfriedsberger, K. Rametsteiner, W. Kern: “Polyethylene compounds with antimicrobial surface properties”, Eur. Polym. J. 42 (2006) no. 12, 3383–3389.
- 57 P.K. Dutta, Shipra Tripathi, G.K. Mehrotra, J. Dutta: “Perspectives for chitosan based antimicrobial films in food applications”, Food Chem. 114 (2009) no. 4, 1173–1182.
- 58 M. Thomas, D. Montenegro, A. Castaño, L. Friedman, J. Leb, M.L. Huang, L. Rothman, H. Lee, C. Capodiferro, D. Ambinder, E. Cere, J. Galante, J.L. Rizzo, K. Melkonian, R. Engel: “Polycations: Synthesis and properties of polycationic derivatives of carbohydrates”, Carbohydr. Res. 344 (2009) no. 13, 1620–1627.
- 59 J. Illergård, L. Wågberg, M. Ek: “Bacterial-growth inhibiting properties of multilayers formed with modified polyvinylamine”, Colloids Surf., B 88 (2011) no. 1 115–120.
- 60 H. Murata, R.R. Koepsel, K. Matyjaszewski, A.J. Russell: “Permanent, non-leaching antibacterial surfaces—2: How high density cationic surfaces kill bacterial cells”, Biomaterials 28 (2007) no. 32, 4870–4879.
- 61 G. Ren, D. Hu, E.W.C. Cheng, M.A. Vargas-Reus, P. Reip, R.P. Allaker: “Characterisation of copper oxide nanoparticles for antimicrobial applications”, Int. J. Antimicrob. Agents 33 (2009) no. 6, 587–590.
- 62 T. Wu, A-G. Xie, S.-Z. Tan, X. Cai: “Antimicrobial effects of quaternary phosphonium salt intercalated clay minerals on Escherichia coli and Staphylococci aureus”, Colloids Surf., B 86 (2011) no. 1, 232–236.
- 63 G. Carja, Y. Kameshima, A. Nakajima, C. Dranca, K. Okada: “Nanosized silver–anionic clay matrix as nanostructured ensembles with antimicrobial activity”, Int. J. Antimicrob. Agents 34 (2009) no. 6, 534–539.
- 64 G.M. Neelgund, A. Oki, Z. Luo: “Antimicrobial activity of CdS and Ag2S quantum dots immobilized on poly(amidoamine) grafted carbon nanotubes”, Colloids Surf., B 100 (2012) 215–221.
- 65 A. Amiri, H. Zare Zardini, M. Shanbedi, M. Maghrebi, M. Baniadam, B. Tolueinia: “Efficient method for functionalization of carbon nanotubes by lysine and improved antimicrobial activity and water-dispersion”, Mater. Lett. 72 (2012) April, 153–156.
- 66 K. Lorenz, S. Bauer, K. Gutbrod, J.P. Guggenbichler, P. Schmuki, C. Zollfrank: “Anodic TiO2 nanotube layers electrochemically filled with MoO3 and their antimicrobial properties”, Biointerphases 6 (2011) no. 1, 16–21.
- 67 K.M. Kumar, B.K. Mandal, E.A. Naidu, M. Sinha, K.S. Kumar, P.S. Reddy: “Synthesis and characterisation of flower shaped Zinc Oxide nanostructures and its antimicrobial activity”, Spectrochim. Acta Part A 104 (2013) 171–174.
- 68 Hyo-Jin Yoon, Seong-Eun Kim, Yong Ku Kwon, Eun Jin Kim, Jong-Chan Lee, Yoon-Sik Lee: “Synthesis of silver nanostructures on polytetrafluoroethylene (PTFE) using electron beam irradiation for antimicrobacterial effect”, J. Ind. Eng. Chem. (Amsterdam) 18 (2012) no. 2, 586–590.
- 69 D. Chmielewska, B. Sartowska: “Radiation synthesis of silver nanostructures in cotton matrix”, Radiat. Phys. Chem. 81 (2012) no. 8 1244–1248.
- 70 M.A. Samaha, H.V. Tafreshi, M. Gad-el-Hak: “Superhydrophobic surfaces: From the lotus leaf to the submarine”, C. R. Mec. 340 (2012) nos. 1–2, 18–34.
- 71 S.S. Madaeni, M. Falsafi, N. Ghaemi: “A novel method for preparation of low-fouling membranes: Surface coating by extracted wax from leafy cabbage”, Desalination 283 (2011) 148–155.
- 72
N. Cioffi,
M. Rai (eds.):
Nano-Antimicrobials: Progress and Prospects,
Springer,
Heidelberg
2012.
10.1007/978-3-642-24428-5 Google Scholar
- 73 J.C. Marijnissen, Leon Gradon (eds.): Nanoparticles in medicine and environment: Inhalation and health effects, Springer, Heidelberg 2009.
- 74 Ai-Hua Pei, Zheng-Wu Shen, Gui-Sheng Yang: “Preparation of TiO2 nanocapsules for loading and release of antimicrobial triclosan molecules”, Mater. Lett. 61 (2007) no. 13, 2757–2760.
- 75 M.E. Barbour, D.J. O'Sullivan, D.C. Jagger: “Chlorhexidine adsorption to anatase and rutile titanium dioxide”, Colloids Surf., A 307 (2007) no. 1–3, 116–120.
- 76 V.S. Dagostin, D.L. Golçalves, C.B. Pacheco, W.B. Almeida, I.P. Thomé, C.T. Pich, M.M.S. Paula, L. Silva, E. Angioletto, M.A. Fiori: “Bactericidal polyurethane foam mattresses: Microbiological characterization and effectiveness”, Mater. Sci. Eng. C 30 (2010) no. 5, 705–708.
- 77 N. Hiraishi, C.K.Y. Yiu, N.M. King, F.R. Tay, D.H. Pashley: “Chlorhexidine release and water sorption characteristics of chlorhexidine-incorporated hydrophobic/hydrophilic resins”, Dent. Mater. 24 (2008) no. 10, 1391–1399.
- 78 S. Kiil, C.E. Weinell, D.M. Yebra, K. Dam-Johansen: “Marine biofouling protection: design of controlled release antifouling paints”, chap. 7, Comput.-Aided Chem. Eng. 23 (2007) 181–238.
- 79 V.K.K. Upadhyayula, V. Gadhamshetty: “Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: A review”, Biotechnol. Adv. 28 (2010) no. 6, 802–816.
- 80 Sung Ho Kim, Seung-Yeop Kwak, Byeong-Hyeok Sohn, Tai Hyun Park: “Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem”, J. Membr. Sci. 211 (2003) no. 1, 157–165.
- 81 Zhongyi Zhang, James MacMullen, Hom Nath Dhakal, J. Radulovic, C. Herodotou, M. Totomis, N. Bennett: “Biofouling resistance of titanium dioxide and zinc oxide nanoparticulate silane/siloxane exterior facade treatments”, Building and Environment 59 (2013) 47–55.
- 82 Manying Zhang, Kaisong Zhang, B. De Gusseme, W. Verstraete: “Biogenic silver nanoparticles (bio-Ag0) decrease biofouling of bio-Ag0/PES nanocomposite membranes”, Water Res. 46 (2012) no. 7, 2077–2087.
- 83 K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q. Li, P.J.J. Alvarez: “Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal”, Water Res. 43 (2009) no. 3, 715–723.
- 84 D.Y. Koseoglu-Imer, B. Kose, M. Altinbas, I. Koyuncu: “The production of polysulfone (PS) membrane with silver nanoparticles (AgNP): Physical properties, filtration performances, and biofouling resistances of membranes”, J. Membr. Sci. 428 (2013) 620–628.
- 85 R. Hausman, T. Gullinkala, I.C. Escobar: “Development of copper-charged polypropylene feedspacers for biofouling control”, J. Membr. Sci. 358 (2010) nos. 1–2, 114–121.
- 86 J. Chapman, E. Weir, F. Regan: “Period four metal nanoparticles on the inhibition of biofouling”, Colloids Surf., B 78 (2010) no. 2, 208–216.
- 87 Jinho Hyun, Hawon Jang, Kyungcheol Kim, Kyunga Na, Taemoon Tak: “Restriction of biofouling in membrane filtration using a brush-like polymer containing oligoethylene glycol side chains”, J. Membr. Sci. 282 (2006) nos. 1–2 52–59.
- 88 H.P. Werner, Cooling tower having reduced microbial contamination, WO 2009083167, 2009.
- 89 P.A. Hunter, G.K. Darby, N.J. Russell (eds.): Fifty Years of Antimicrobials: Past Perspectives and Future Trends, Cambridge University Press, 1995.
Further Reading
- A. Muñoz-Bonilla, M. Fernández-García: “Polymeric materials with antimicrobial activity”, Progr. Polym. Sci. 37 (2012) no. 2, 281–339.
-
S. Dürr,
J. Thomason:
Biofouling,
John Wiley & Sons,
New York
2009.
10.1002/9781444315462 Google Scholar