Vitamins, 6. B Vitamins

Gérard Moine

Gérard Moine

F. Hoffmann-La Roche Ltd, Basel, Switzerland

Search for more papers by this author
Hans-Peter Hohmann

Hans-Peter Hohmann

F. Hoffmann-La Roche Ltd, Basel, Switzerland

Search for more papers by this author
Roland Kurth

Roland Kurth

BASF Aktiengesellschaft, Ludwigshafen, Germany

Search for more papers by this author
Joachim Paust

Joachim Paust

BASF Aktiengesellschaft, Ludwigshafen, Germany

Search for more papers by this author
Wolfgang Hähnlein

Wolfgang Hähnlein

BASF Aktiengesellschaft, Ludwigshafen, Germany

Search for more papers by this author
Horst Pauling

Horst Pauling

F. Hoffmann-La Roche Ltd, Basel, Switzerland

Search for more papers by this author
Bernd–Jürgen Weimann

Bernd–Jürgen Weimann

F. Hoffmann-La Roche Ltd, Basel, Switzerland

Search for more papers by this author
Bruno Kaesler

Bruno Kaesler

BASF Aktiengesellschaft, Ludwigshafen, Germany

Search for more papers by this author
First published: 15 October 2011
Citations: 3

Abstract

The article contains sections titled:

1.

Vitamin B1 (Thiamin)

1.1.

Structure and Nomenclature

1.2.

History

1.3.

Physical Properties

1.4.

Chemical Properties

1.5.

Natural Occurrence and Isolation

1.6.

Biosynthesis in Microorganisms

1.6.1.

Biosynthesis of the Pyrimidine Component in Prokaryotes

1.6.2.

Biosynthesis of the Pyrimidine Component in Eukaryotes

1.6.3.

Biosynthesis of the Thiazole Component

1.6.4.

Biosynthesis of Thiamin Pyrophosphate

1.6.5.

Thiamin Biosynthetic Genes from E. coli

1.6.6.

Mapping and Cloning of Thiamin Biosynthetic Genes from Other Species

1.6.7.

Regulation of Thiamin Biosynthesis in Prokaryotes

1.6.8.

Regulation of Thiamin Biosynthesis in Yeasts

1.6.9.

Thiamin-Overexpressing Microorganisms

1.7.

Chemical Synthesis

1.7.1.

Condensation of the Pyrimidine and Thiazole Rings

1.7.2.

Construction of the Thiazole Ring on a Preformed Pyrimidine Portion

1.8.

Commercial Forms

1.9.

Derivatives, Analogues, and Antimetabolites

1.10.

Biochemical and Physiological Functions

1.10.1.

Metabolic Functions in the Organism

1.10.2.

Thiamin Requirements and Deficiency

1.11.

Analytical Methods

2.

Riboflavin

2.1.

Introduction

2.2.

History

2.3.

Physical and Chemical Properties

2.4.

Occurrence

2.5.

Biosynthesis

2.6.

Production

2.6.1.

Syntheses

2.6.2.

Industrial Chemical Production

2.6.3.

Industrial Production by Fermentation

2.6.4.

Syntheses of Flavin Mononucleotide (FMN)

2.6.5.

Syntheses of Flavin Adenine Dinucleotide (FAD)

2.7.

Importance for the Organism

2.8.

Requirements, Deficiency Symptoms, and Therapeutic Application

2.9.

Analysis

2.10.

Economic Aspects

2.11.

Tolerance

3.

Vitamin B6

3.1.

Introduction

3.2.

History

3.3.

Physical Properties

3.4.

Chemical Reactions

3.5.

Occurrence

3.6.

Biosynthesis

3.7.

Production of Vitamin B6 Compounds

3.7.1.

Pyridoxine

3.7.1.1.

Oxidative Degradation of Bicyclic Heterocyclic Compounds

3.7.1.2.

Condensation Reactions with Aliphatic Precursors

3.7.1.3.

From Furan Compounds

3.7.1.4.

Diels - Alder Syntheses with Oxazoles

3.7.1.5.

Cobalt-Catalyzed [2+2+2]-Cycloaddition Reactions of Acetylenes and Acetonitrile

3.7.2.

Pyridoxine 5′-Phosphate

3.7.3.

Pyridoxal

3.7.4.

Pyridoxal 5′-Phosphate

3.7.5.

Pyridoxamine

3.7.6.

Pyridoxamine 5′-Phosphate

3.8.

Metabolism and Importance for the Organism

3.9.

Deficiency Symptoms and Applications

3.10.

Analysis

3.11.

Economic Aspects

3.12.

Requirements and Tolerance

4.

Vitamin B12 (Cobalamins)

4.1.

Introduction

4.2.

Properties of Vitamin B12

4.3.

Analysis

4.4.

Biosynthesis

4.5.

Production

4.5.1.

Fermentation

4.5.2.

Work-Up

4.5.3.

Patents and Scientific Survey

4.6.

Specifications and Legal Aspects

4.7.

Economic Aspects

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.