Surface and Thin-Film Analysis, 2. Electron Detection

John C. Rivière

John C. Rivière

Harwell Laboratory, AEA Technology, Didcot, United Kingdom

Search for more papers by this author
Heinrich F. Arlinghaus

Heinrich F. Arlinghaus

Physical Institute, Westfälische Wilhelms-University, Münster, Germany

Search for more papers by this author
Herbert Hutter

Herbert Hutter

Institute of Analytical Chemistry, University of Technology, Vienna, Austria

Search for more papers by this author
Holger Jenett

Holger Jenett

Institute of Spectrochemistry and Applied Spectroscopy (ISAS), Dortmund, Germany

Search for more papers by this author
Peter Bauer

Peter Bauer

Institute of Experimental Physics, Johannes Kepler University, Linz, Austria

Search for more papers by this author
Leopold Palmetshofer

Leopold Palmetshofer

Institute of Semiconductor and Solid State Physics, Johannes Kepler University, Linz, Austria

Search for more papers by this author
First published: 15 October 2011
Citations: 1

Abstract

The article contains sections titled:

1.

X-Ray Photoelectron Spectroscopy (XPS)

1.1.

Principles

1.2.

Instrumentation

1.2.1.

Vacuum Requirements

1.2.2.

X-Ray Sources

1.2.3.

Synchrotron Radiation

1.2.4.

Electron Energy Analyzers

1.2.5.

Spatial Resolution

1.3.

Spectral Information and Chemical Shifts

1.4.

Quantification, Depth Profiling, and Imaging

1.4.1.

Quantification

1.4.2.

Depth Profiling

1.4.3.

Imaging

1.5.

The Auger Parameter

1.6.

Applications

1.6.1.

Catalysis

1.6.2.

Polymers

1.6.3.

Corrosion and Passivation

1.6.4.

Adhesion

1.6.5.

Superconductors

1.6.6.

Interfaces

2.

Ultraviolet Photoelectron Spectroscopy (UPS)

3.

Auger Electron Spectroscopy (AES)

3.1.

Principles

3.2.

Instrumentation

3.2.1.

Vacuum Requirements

3.2.2.

Electron Sources

3.2.3.

Electron Energy Analyzers

3.3.

Spectral Information

3.4.

Quantification and Depth Profiling

3.4.1.

Quantification

3.4.2.

Depth Profiling

3.5.

Applications

3.5.1.

Grain Boundary Segregation

3.5.2.

Semiconductor Technology

3.5.3.

Thin Films and Interfaces

3.5.4.

Surface Segregation

4.

Scanning Auger Microscopy (SAM)

5.

Other Electron-Detecting Techniques

5.1.

Auger Electron Appearance Potential Spectroscopy (AEAPS)

5.2.

Electron Energy Loss Methods

5.2.1.

Electron Energy Loss Spectroscopy (EELS) and Core-Electron Energy Loss Spectroscopy (CEELS)

5.2.2.

High-Resolution Electron Energy Loss Spectroscopy (HREELS)

5.3.

Diffraction Methods

5.3.1.

Low-Energy Electron Diffraction (LEED)

5.3.2.

Reflection High-Energy Electron Diffraction (RHEED)

5.4.

Ion-Excitation Method

5.4.1.

Ion (Excited) Auger Electron Spectroscopy (IAES)

5.4.2.

Ion-Neutralization Spectroscopy (INS)

5.4.3.

Metastable Quenching Spectroscopy (MQS)

5.5.

Inelastic Electron Tunneling Spectroscopy (IETS)

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.