Biotechnology, 5. Monitoring and Modeling of Bioprocesses
View previous versions
Biotechnology
Thomas Becker
University of Hohenheim, Institute of Process Analytics, Germany
Search for more papers by this authorDietmar Breithaupt
University of Hohenheim, Institute of Food Chemistry, Germany
Search for more papers by this authorHorst Werner Doelle
University of Queensland, Department of Microbiology, St. Lucia, Queensland, Australia, 4067
Search for more papers by this authorArmin Fiechter
Eidgenössische Technische Hochschule, Institute of Biotechnology, Zürich, Switzerland
Search for more papers by this authorGünther Schlegel
University of Göttingen, Institute of Microbiology, Göttingen, Germany
Search for more papers by this authorSakayu Shimizu
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorHideaki Yamada
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorThomas Becker
University of Hohenheim, Institute of Process Analytics, Germany
Search for more papers by this authorDietmar Breithaupt
University of Hohenheim, Institute of Food Chemistry, Germany
Search for more papers by this authorHorst Werner Doelle
University of Queensland, Department of Microbiology, St. Lucia, Queensland, Australia, 4067
Search for more papers by this authorArmin Fiechter
Eidgenössische Technische Hochschule, Institute of Biotechnology, Zürich, Switzerland
Search for more papers by this authorGünther Schlegel
University of Göttingen, Institute of Microbiology, Göttingen, Germany
Search for more papers by this authorSakayu Shimizu
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorHideaki Yamada
Kyoto University, Department of Agricultural Chemistry, Kyoto, Japan
Search for more papers by this authorAbstract
The article contains sections titled:
1. |
Introduction |
2. |
Characteristics of Bioprocesses |
2.1. |
System Definition |
2.2. |
System Description |
2.3. |
Dynamics of Biosystems and Real-Time Considerations |
3. |
Biotechnological Measurement Systems |
3.1. |
Process Requirements Concerning Measuring Quantities |
3.2. |
Online Sensing Devices |
3.3. |
Further Aspects Concerning Measuring Systems |
4. |
Cognitive Computing |
4.1. |
Fuzzy Logic Systems |
4.2. |
Artificial Neural Networks (ANN) |
5. |
Modeling Aspects of Biological Systems |
5.1. |
Steps in Creating a Model |
5.2. |
Reasons for Making a Model |
5.3. |
Different Types and Basic Approaches for Building a Model |
References
- 1 L. Boillereax, J.M. Flaus, “A new approach for designing model-based indirect sensors” IEEE Trans. Control Systems Tech. 8 (2000) 601.
- 2 J.M. Flaus, L. Boillereaux, “Moving horizont state estimation for a bioprocess modeled by a neural network”, Trans. Inst. Measurement. Control. 19 (1997) 263.
- 3 J. Giese, “Online sensors for food processing”, J. Food Technol. 47 (1993) 88.
- 4 Y. H. Zhu et al., “Application of neural networks in lysine fermentation control”, Biochem. Eng. J. 62 (1996) 207.
- 5 R. Simutis, “Fuzzy-Aided neural network for real-time state estimation and process prediction in alcohol formation step of production-scale beer brewing”, J. Biotechnol. 27 (1993) 203.
- 6 M.N. Karim, “Global and local neural network models in Biotechnology: Application to different cultivation processes”, J. Ferment. Bioeng. 33 (1997) 1.
- 7 J.F.M. Impe, “Power and limitations of model based bioprocess optimization”, Mathematics and Computers in Simulation 42 (1996) 159.
- 8 P. Saha et al., “Multi-Input multi-output control a continuous fermenter using nonlinear model based controllers”, Bioprocess Engineering 21 (1999) 533.
- 9 J. A. Roels: Energetics and kinetics in biotechnology, Elsevier Biomedical Press, Amsterdam 1983.
- 10 J.E. Bailey, “Mathematical Modeling and analysis in Biochemical Engineering: Past Accomplishments and Future Opportunities”, Biotechnol. Prog. 14 (1998) 8.
- 11 J.J. Heijnen, “Thermodynamics ov microbial growth and ist implications for process design”, TibTech 12 (1994), 483.
- 12
G. R. Gavalas:
Nonlinear Differential Equations of chemically Reaction Systems,
Springer,
Berlin
1968.
10.1007/978-3-642-87643-1 Google Scholar
- 13 R. Plonsey: Volume Conductor Theory, in J.D. Bronzino (ed): The Biomedical Engineering Handbook, CRC Press, Boca Raton 1995, pp. 119–125.
- 14
C.C. Lin,
L. A. Segel:
Mathematics applied to deterministic problems in the natural science,
SIAM, Philadelphia
1988.
10.1137/1.9781611971347 Google Scholar
- 15 D. A. Anderson, et al.: Computional fluid mechanics and heat transfer, Hemisphere Publishing Corporation, New York 1984.
- 16 H. Nirschl, et al., “Three Dimensional Calculations of the Simple Shear Flow around a Single Particle between two Moving Walls”, J. of Fluid Mech. 283 (1995) 273.
- 17 H. Nirschl: Partikelbewegung in Scherströmungen ohne und mit Berücksichtigung des Einflusses angrenzender Wände, VDI-Verlag Düsseldorf 1997.
- 18 F.M. Williams, “A Model for cell growth dynamics”, J. Theor. Biol. 15 (1967), 190.
- 19 D. Ramkrishna: A cybernetic perspective of microbial growth, in E. Papoutsakis, G.N. Stephanopoulus, H.W. Blanch, (eds): Foundations of biochemical engineering kinetics and thermodynamics in biological sytems, American Chemical Society, Washington (1982).
- 20 G. Bastin,; D. Dochain,: Online Estimation and adaptive control of bioreactors, Elsevier Science Publisher, Amsterdam 1990.
- 21 J. Nielson,; J. Villadsen,: Bioreactors: Description and modeling”, in: Biotechnology 3. G. Stephanopolous; Eds: VCH-Verlag Weinheim 1993.
- 22
K. Schügerl
K.H. Bellgardt:
Bioreaction Engineering: Modeling and Control,
Springer,
Berlin
2000.
10.1007/978-3-642-59735-0 Google Scholar
- 23 M. Gavrilescu, M. Macoveanu, “Process Engineering in Biological Aerobic Waste-Water Treatment”, Acta Biotechnol. 19 (1999), 111.
- 24 I.J. Dunn; E. Heinzle; J. Ingham; J.E. Prenosil: Biological Reaction engineering, VCH Verlagsgesellschaft, Weinheim 1992.
- 25 D.M. Trujillo; H. R. Busby: Practical Inverse Analysis in Engineering, CRC Press, Boca Raton 1997.
- 26 E. Hensel: Inverse Theory and Applications for Engineers, Prentice-Hall, New Jersey 1991.
- 27 B. Sonnleitner: in U. Mortensen, H.J. Noorman, (eds): Bioreactor performance, Biotechnology Research foundation Lund 1993, p. 143.
- 28 A. Harder, J.A. Roels, “Application of simple structured models in bioengineering”, Adv. Biochem. Eng. 21 (1982), 56.
- 29 J.J. Heijnen, A. H. Terwisscha van Scheltinga, A.J. Straathof, “Fundamental bottlenecks in the application of continuous bioprocesses”, J. Biotechnol. 22 (1992), 3.
- 30 J.P. Axelsson, T. Münch, B. Sonnleitner: in N. Karim (ed): Computer applications in fermentation technology — Modeling and control of bioprocesses, Pergamon (1992), 383–386.
- 31 B. Sonnleitner, U. Hahnemannn, “Dynamics of the respiratory bottleneck of Saccharomyces cerevisiae”, J. Biotechnol. 38 (1994), 63.
- 32 J. Nielsen, K. Nikolajsen, J. Villadsen, “Structured modeling of a microbial system: I A theoretical study of lactic acid fermentation”, Biotech. Bioeng. 38 (1991), 1.
- 33 B. Sonnleitner, S.A. Rothen, H. Kuriyama, “Dynamics of glucose consumption in yeast”, Prog. Biotechnol. 13 (1997), 8.
- 34 W. de Koning, K. van Dam, “A method for the Determination of changes of glycolytic metabolites in yeast on a subsecond time scale using extraction at neutral pH”, Anal. Biochem. 204 (1992), 118.
- 35 K. van Dam, J. Vandervlag, B.N. Kholodenko, H.V. Westerhoff, “The sum of the control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two”, Eur. J. Biochem. 212 (1993), 791.
- 36 M. Rizzi, U. Theobald, M. Baltes, M. Reuss: “Measurements and modeling of the dynamic glucose response of Saccharomyces cerevisiae in the time window of mixing times”, in A.W. Nienow, (ed.): 3rd international conference on bioreactor and bioprocess fluid dynamics. Mechanical Engineering Publishers London, 1993, pp. 401–412.
- 37 U. Theobald, W. Mailinger, M. Reuss, M. Rizzi, “In vivo analysis of glucose-induced fast changes in yeast adenine nucleotide pool applying a rapid sampling technique”, Anal. Biochem. 214 (1993), 31.
- 38 B. Sonnleitner, “Dynamic adaptation of microbes”, J. Biotech. 65 (1998), 47.
- 39 P. Neubauer, L. Haggstrom, S.O. Enfors, “Influence of Substrate Oscillations on Acetate Formation and Growth Yield in Escherichia coli Glucose Limited Fed-Batch Cultivations”, Biotechnol. Bioeng. 47 (1995) 139.
- 40 S. George, G. Larsson, S.O. Enfors: “Metabolic response of Saccharomyces cerevisiae in scale-down two- compartment reactor with controlled substrate oscillations”, in L. Alberghina, L. Frontali, P. Sensi, (eds.): ECB6: Proceedings of the 6th European Congress on Biotechnology, Vol. 9 Part II, 1994, pp. 883–890:
- 41 A. Fiechter, B. Sonnleitner, “Non-invasive concepts in metabolic studies”, Adv. Microb. Physiol. 36 (1994) 145.
- 42 S. Linko, P. Linko, “Developments in Monitoring and control of food processes”, Trans IChemE 76 (1998) 127.
- 43 T.A. Haley, S. J. Mulvaney, “Advanced process control techniques for the food industry” Trends Food Sci. Technol. 6 (1994) 103.
- 44 S. Shioya, K. Shimizu, T. Yoshida, “Knowledge-based design and operation of bioprocess systems” J. of Bioscience and Bioeng. 87 (1999) 261.
- 45
J. R. Perez-Correa,
C.A. Zaror,
“Recent advances in process control and their potential applications to food processing”,
J. Food Control.
4
(1993)
202.
10.1016/0956-7135(93)90250-R Google Scholar
- 46 B. Sonnleitner: Instrumentation of biotechnological processes, in T. Scheper (ed.): Advances in biochemical engineering biotechnology, Springer, Berlin 2000, pp. 3–54.
- 47 P. Ries: “ Entwicklung einer Meßsystem-Konzeption zur dynamischen Messung der Trocken-Zelldichte von aufbereiteten Bakterien-Suspensionen auf der Grundlage der Streulichtmessung”, Dissertation, ETH Zürich 1983.
- 48 P.C. Hauser, T.W.T. Rupansinghe, “A multi-wavelength photometer based on light-emitting diodes”, Talanta 42 (1995) 605.
- 49 E. Nestaas, D.I.C. Wang, “A new sensor — the Filtration Probe” — for quantitative charakterization of penicillin fermentation. III. An automatically operating probe”, Biotechnol. Bioeng. 25 (1983) 1981.
- 50 D.C. Thomas, V.K. Chittur, J.W. Cagney, H.C. Lim, “Online estimation of mycelial cell mass concentrations with a computer-interfaced filtration probe”, Biotechnol. Bioeng. 27 (1985) 729.
- 51 G.H. Markx, D.B. Kell, “The use of dielectric permittivity for the control of the biomass level during biotransformations of toxic substrates in continuous culture”, Biotechnol. Prog. 11 (1995) 64.
- 52 K. Asami, T. Yonezawa, “Dielectric analysis of yeast cell growth”, BBA Gen Subjects 1245 (1995) 99.
- 53 L.C.M. Auberson, T. Kanbier, U. Stockar, “Monitoring synchronized oscillating yeast cultures by calorimetry”, J. Biotech. 29 (1993) 205.
- 54 M. Rieseberg, C. Kasper, K.F. Reardon, T. Scheper, “Flow cytometry in biotechnology”, Appl. Microbiol. Biotechnol. 56 (2001) 350.
- 55 J. Mukherjee, C. Lindemann, T. Scheper, “Fluorescence monitoring during cultivation of Enterobacter aerogenes at different oxygen levels”, Applied Microbiology and Biotechnology 52 (1999) 489.
- 56 L.K. Ju, X. Yang, J.F. Lee, W.B. Armiger, “Monitoring of the Biological Nutrient Removal process by an online NADPH Fluorometer”, Biotechnol. Progress 11 (1995) 545.
- 57 D. Kell, B. Sonnleitner, “GMP — Good modeling practise: an essential component of good manufacturing practise”, TIBTECH 13 (1995) 481.
- 58 J. Maddox, “Towards more measurement in biology”, Nature 368 (1994) 95.
- 59 K. Steube, U. Spohn, “Online monitoring of intracellular enzyme activities with flow injection analysis”, Anal. Chim. Acta 284 (1994) 235.
- 60 I. Ogbomo, A. Steffl, W. Schuhmann, U. Prinzing, H.-L. Schmidt, “Online determination of ethanol in bioprocesses based on sample extraction by continuous pervaporation”, J. Biotech. 31 (1993) 317.
- 61 N.C. van de Merbel, H. Lingemann, U. Brinkmann, “Sampling and analytical strategies in online bioprocess monitoring and control”, J. Chromatography 725 (1996) 13.
- 62 J.M. Hilmer, T. Scheper, “A new version of an in-situ sampling system for bioprocess analysis”, Acta Biotechnol. 16 (1996) 185.
- 63 L. Olsson, U. Schulz, J. Nielsen, “Online bioprocess monitoring — an academic discipline or an industrial tool”, Trends. Anal. Chem. 17 (1998) 88.
- 64 G. Locher, B. Sonnleitner, A. Fiechter, “Online measurement in biotechnology: exploitation, objectives and benefits”, Journal of Biotechnology 25 (1993) 55.
- 65 R.G. Brown; P.Y.C. Hwang: Introduction to random signals and applied kalman filtering, 3rd ed., John Wiley & Sons, New York 1997), pp. 260–265.
- 66 P.V. Zumbusch, T. Meyerjens, B. Brunner, H. Märkl, “Online monitoring of organic substances with high-pressure liquid chromatography (HPLC) during the anaerobic fermentation of waste-water”, Appl. Microbio. Biotechnol. 42 (1994) 140.
- 67 C.S. Effenhauser, A. Manz, H.M. Widmer, “Glass chips for high-speed capillary electrophoresis separations with submicrometer plate heights”, Analytical Chemistry 65 (1993) 2637.
- 68 N.C. van de Merbel, P. Zuur, M. Frijlink, J. J. M. Holthuis, H. Lingeman, U.A.T. Brinkman:, “Automated monitoring of biotechnological processes using online ultrafiltration and column liquid chromatography”, Anal. Chim. Acta 303 (1993) 39.
- 69 H. Kurokawa, Y.S. Park, S. Iijima, T. Kobayashi, “Growth characteristics in fed-batch culture of hybridoma cells with control of glucose and glutamine concentrations”, Biotechnology and Bioengineering 44 (1994) 95.
- 70 C. Zwiener, F.H. Frimmel, “Oxidative treatment of pharmaceuticals in water”, Water Research 34 (2000) 1881.
- 71 T. Meyer-Jens, G. Matz, H. Märkl, “On-line measurement of dissolved and gaseous hydrogen sulphide in anaerobic biogas reactors”, App. Microbiol. Biotechnol. 43 (1995) 341.
- 72 E. Heinzle, “Present and potential applications of mass spectrometry for bioprocess research and control” J. Biotechnol. 25 (1992) 81.
- 73 H.-L. Schmidt, W. Schuhmann, F.W. Scheller, F. Schubert,: Specific features of Biosensors, in W. Göpel, et al. (ed.), Sensors: a comprehensive survey, Chemical and Biochemical Sensors,: VCH Verlagsgesellschaft, Weinheim 17 1992, pp. 717–818.
- 74 S. Zhang, G. Wright, Y. Yang, “Materials and techniques for electrochemical biosensor design and construction”, Biosensors and Bioelectronics 15 (2000) 273.
- 75
D.G. Myszka,
“Survey of the 1998 optical biosensor literature”,
Journal of Molecular Recognition
12
(1999)
390.
10.1002/(SICI)1099-1352(199911/12)12:6<390::AID-JMR482>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- 76 Q. Chen, B. Kersten, J. Li, C. Wu, P. Jagasia, A. Ewing, “A multichannel automated amperometric test system for glucose monitoring biosensor quality control testing”, Electroanalysis 13 (2001) 61.
- 77
I. Eshkenazi,
E. Maltz,
B. Zion,
J. Rishpon,
“A three-cascaded-enzymes biosensor to determine lactose concentration in raw milk”,
Journal of Dairy Science
83
(2000)
939.
10.3168/jds.S0022-0302(00)75069-7 Google Scholar
- 78 J. Perdomo, H. Hinkers, C. Sundermeier, W. Seifert, O.M. Morell, M. Knoll, “Miniaturized real-time monitoring system for l-lactate and glucose using microfabricated multi-enzyme sensors”, Biosensors and Bioelectronics 15 (2000) Nov., 515.
- 79 B. Serra, A.J. Reviejo, C. Parrado, J.M. Pingarron, “Graphite-Teflon composite bienzyme electrodes for the determination of l-lactate: Application to food samples”, Biosensors and Bioelectronics 14 (1999) 505.
- 80 M.D. Luque de Castro, G.J.L. Luque:, “Biosensors in wine production monitoring”, Analytical Letters 33 (2000) 963.
- 81 M.J.F. Rebelo:, D. Compagnone, G.G. Guilbault, G.J. Lubrano, “Alcohol electrodes in Beverage Measurements”, Anal. Letters 27 (1994) 3027.
- 82 C.S. Rui, K. Sonomoto, H.I. Ogawa, Y. Kato, “A flow-injection biosensor system for the amperometric determination of creatinine: Simultaneous compensation of endogeneous interferents”, Anal. Biochem. 210 (1993) 163.
- 83 E. Mallat, C. Barzen, R. Abuknesha, G. Gauglitz, D. Barcelo, “Fast determination of paraquat residues in water by an optical immunosensor and validation using capillary electrophoresis-ultraviolet detection”, Analitica Chimica Acta 427 (2001) 165.
- 84 J.J. Xu, H.Y. Chen, “Amperometric glucose sensor based on glucose oxidase immobilized in electrochemically generated poly(ethacridine)”, Analytica Chimica Acta 423 (2000) 101.
- 85 D.L. Massart, B.G.M. Vandeginste:, S.N. Deming, Y. Michotte, L. Kaufman: Chemometrics: a textbook, in B.G.M. Vandeginste:, L. Kaufman, (ed.), Data Handling in science and technololgy, vol. 2, Elsevier, Amsterdam 1988.
- 86 J. Ruzicka; E.H. Hansen: Flow Injection Analysis, 2nd edn., John Wiley & Sons, New York, 1988.
- 87 G. Bastin; D. Dochain: Online Estimation and Adaptive Control of Bioreactors, Elsevier, Amsterdam 1990.
- 88 A. Cheruy, “Software Sensors in bioprocess engineering” J. Biotechnol. 52 (1997) 193.
- 89 S. Vassileva, B. Tzvetkova, C. Katranoushkova, L. Losseva, “Neuro-fuzzy prediction of uricase procduction”, Bioprocess Eng. 22 (2000) 363.
- 90 G. Liebsch, I. Klimant, B. Frank, G. Holst, O.S. Wolfbeis, “Luminescence lifetime imaging of oxygen, pH, and carbon dioxide distribution using optical sensors”, Applied Spectroscopy 54 (2000) 548.
- 91 F. Shiraishi, “Apparent kinetic parameters of an immobilized enzyme reaction: What is expected from oversimplification?”, Enzyme Microb. Technol. 16 (1994) 349.
- 92 Y.K. Jung, W. Hur, “A new method of online measurement of buffer capacity and alkali consumption rate of a fermentation process”, Journal of Bioscience and Bioengineering 90 (2000) 580.
- 93 O. Bernard, S.Z. Hadj, D. Dochain, “Software sensors to monitor the dynamics of microbial communities: Application to anaerobic digestion”, Acta Biotheoretica 48 (2000) 197.
- 94 V. Acha, M. Meurens, H. Naveau, D. Dochain, G. Bastin, S.N. Agathos, “Model-based estimation of an anaerobic reductive dechlorination process via an attenuated total reflection-Fourier transform infrared sensor”, Water-Science-and-Technology 40 (1999) 33.
- 95 T. Yano, M. Harata, “Prediction of the concentration of several constituents in a mouse-mouse hybridoma by near infrared spectroscopy”, J. Ferment. Bioeng. 77 (1994) 659.
- 96 R. Schindler, H.L. Thanh, B. Lendl, R. Kellner, “Determination of enzyme kinetics and chemometric evaluation of reaction products by FTIR spectroscopy on the example of beta-fructofuranosidase”, Vibrational Spectroscopy 16 (1998) 127.
- 97 H. Hoyer, “NIR online analysis in the food industry”, Process Control and Quality 9 (1997) 143.
- 98 G. Downey, “Authentication of food and food ingredients by near infrared spectroscopy”, J. Near Infrared Spectroscopy 4 (1996) 47.
- 99 T.K. Hamrita, S. Wang, “Pattern Recognition for Modeling and online diagnosis of Bioprocesses”, IEEE Trans. Industr. Applications 36 (2000) 1295.
- 100 T.T. Bachmann, B. Leca, F. Vilatte, J.L. Marty, D. Fournier, R. Schmid, “Improved multianalyte detection of organophosphates and carbamates with disposable multielectrode biosensors using recombinant mutants of Drosophila acetylcholinesterase and artificial neural networks”, Biosensors and Bioelectronics 15 (2000) 193.
- 101 R.M. de Mol, W.E. Woldt, “Application of fuzzy logic in automated cow status monitoring”, Journal of Dairy Science 84 (2001) 400.
- 102 Z. Shi, K. Shimizu, “Neuro-Fuzzy control of bioreactor systems with pattern recognition”, J. Ferment. Bioeng. 74 (1992) 39.
- 103 G. Stephanopoulos, G. Locher, M. Duff: “Pattern recognition methods for fermentation database mining”, Reprints of the 6th Conference on Computer Applications in Biotechnology 1995, 195–198.
- 104 J. Bradley, A.P.F. Turner:, R.D. Schmidt: An in situ fermenter probe for bakers yeast propagation monitoring, in GBF Monographs 13, 1989, pp. 85–88.
- 105 E. Heinzle, A. Oeggerli, B. Dettwiler, “Online fermentation gas analysis: Error analysis and application of mass spectrometry” Anal. Chim. Acta 238 (1990) 101.
- 106 G. Locher, U. Hahnemann, B. Sonnleitner, A. Fiechter, “Automatic bioprocess control: 5. Biologically and technically caused effects during cultivation”, Journal-of-Biotechnology 29 (1993) 75.
- 107 M. Dehghani, M. Bulmer, M.-E. Gregory, N.-F. Thornhill, “Measurement variability analysis for fermentation process assays”, Bioprocess-Engineering 13 (1995) 239.
- 108 B. Sonnleitner, “New concepts for quantitative bioprocess research and development”, Advances in Biochemical Engineering, Biotechnology; Metabolic engineering 54 (1996) 155.
- 109
W. McCulloch,
W. Pitts,
“A logical calculus of the ideas immanent in nervous activity”,
Bulletin of Mathematical Biophysics
5
(1943)
115.
10.1007/BF02478259 Google Scholar
- 110
D. Rumelhart,
J. McClelland:
Parallel distributed Processing,
MIT Press,
Massachussetts
1986.
10.7551/mitpress/5236.001.0001 Google Scholar
- 111 D. Rumelhart, G.E. Hinton, R.J. Williams, “Learning representations by back-propagating errors”, Nature 323 (1988), 533.
- 112 L.A. Zadeh, “Fuzzy Sets”, Information and Control 8 (1965) 338.
- 113
J.H. Holland,:
Adaption in Natural and Artificial Systems,
1. and
2. ed.,
MIT Press,
Boston 1975,
1992.
10.7551/mitpress/1090.001.0001 Google Scholar
- 114 A. Bardossy, L. Duckstein,: Fuzzy rule-based modeling with applications to geophysical, biological and engineering systems, CRC Press, Boca Raton 1995.
- 115 H. Kiendl,: Fuzzy control — methodenorientiert, Oldenbourg Verlag, München 1997.
- 116 B. Kosko: Neural Networks and Fuzzy Systems — A dynamical systems approach to machine intelligence, Prentice Hall International, London 1992.
- 117 A. Zell: Simulation neuronaler Netze, Addison-Wesley Publishing Company, Bonn 1994.
- 118
C.M. Bishop:
Neural Networks for pattern Recognition,
Clarendon Press,
Oxford
1995.
10.1093/oso/9780198538493.001.0001 Google Scholar
- 119
D. Dasgupta,
Z. Michalewicz,:
Evolutionary Algorithms in Engineering Applications,
Springer Verlag,
Berlin
1997.
10.1007/978-3-662-03423-1 Google Scholar
- 120 W. Banzhaf, P. Nordin, R.E. Keller, F.D. Francone,: Genetic Programming: An Introduction: On the Automatic Evolution of Computer Programs and Its Applications, Morgan Kaufmann Publisher, Los Angeles 1998.
- 121 T. Eerikäinen, P. Linko, S. Linko, T. Siimes, Y.-H. Zhu, “Fuzzy logic and neural network applications in food science and technology”, Trends in Food Science & Technology 4 (1993) 237.
- 122 S. Shioya, K. Shimizu, T. Yoshida, “Knowledge-based design and operation of bioprocess systems”, J. Bioscience and Bioeng. 87 (1999) 261.
- 123 B. Kanizsa, “Subjective Contours”, Scientific American 234 (1976) 48.
- 124 H.J. Zimmermann: Fuzzy Technologien — Prinzipien, Werkzeuge, Potentiale, VDI-Verlag, Düsseldorf 1993.
- 125
A.E. Imrani,
A. Bouroumi,
Z.E.A. Abidime:,
A. Essaid,
“A fuzzy clustering-based niching approach to multimodal function optimiziation”,
J. Cog. Systems Res.
1
(2000)
119.
10.1016/S1389-0417(99)00013-3 Google Scholar
- 126 S.E. Fahlman, C. Lebiere: The cascade-correlation learning architecture, in D.S. Touretzky, Advances in Neural information processing systems, Morgan Kaufmann Publisher, Los Angeles 1990, pp. 524–532.
- 127 R.O. Duda, P.E. Hart: Pattern classification and scene analysis, John Wiley, New York 1973.
- 128 L. Pickert, F. Kalwonn, E. Wingender, “Transcription regulatory region analysis using signal detection and fuzzy clustering”, Bioinformatics 14 (1998) 244.
- 129 J.J. Buckley, Y. Hayashi, E. Czogala, “On the equivalenc of neural nets and fuzzy expert systems”, Fuzzy Sets and Systems 53 (1993) 129.
- 130
D.V. Lindley,
“The probability approach to the treatment of uncertainty in artificial intelligence and expert system”,
Statistical science
2
(1987)
17.
10.1214/ss/1177013427 Google Scholar
- 131 L.A. Zadeh, “Fuzzy Sets as a basis for a theory of possibilities”, Fuzzy sets and Systems 1 (1978) 3.
- 132 D. Dubois, H. Prade, “Properties of measures of information in evidence and possibility theories”, Fuzzy sets and Systems 24 (1987) 162.
- 133 L. Zadeh, “The concept of a linguistic variable and its application to approximate reasoning, part 1 to 3”, Information Science 8 (1975) 199 199, 8 (1975) 301, 9 (1976) 43.
- 134 C. Lee, “Fuzzy logic in control system: Fuzzy logic controller-part i”, IEEE Transactions on Sytems, Man, and Cybernetics 20 (1990) 404.
- 135 I. Turksen, H. Tanaka, J. Watade, “Special issue on expert decision-support systems — foreword”, Fuzzy Sets and Systems 58 (1993) 1.
- 136 B. Kosko: Fuzzy Thinking. The New Science of Fuzzy Logic, Hyperion Inc., New York 1993.
- 137 R. Yager, D. Filev: Essentials of Fuzzy Modeling and Control, John Wiley & Sons, Inc., New York 1994.
- 138 R. Kruse, J. Cebhardt, F. Klawonn: Foundations of Fuzzy Systems, John Wiley & Sons, Inc., New York 1994.
- 139 I. Turksen, “Measurement of membership functions and their acquisition”, Fuzzy Sets and Systems 40 (1991) 5.
- 140 Y. Yoshinari, W. Pedrycz, K. Hirota, “Construction of fuzzy models through clustering-techniques”, Fuzzy Sets and Systems 78 (1996) 1.
- 141 M. Yang, “A survey of fuzzy clustering”, Mathematical and Computer Modeling 18 (1993) 1.
- 142
H. Takagi,
L. Hayashi,
“NN-driven fuzzy reasoning”,
International Journal of Approximate Reasoning
5
(1991)
191.
10.1016/0888-613X(91)90008-A Google Scholar
- 143 T. Williams, “New tools make fuzzy/neural more, than an academic amusement”, Computer Design 14 (1994) 69.
- 144
C. Karr,
E. Gentry,
“Fuzzy control of ph using genetic algorithms”,
IEEE Transactions on Fuzzy Systems
1
(1993)
46.
10.1109/TFUZZ.1993.390283 Google Scholar
- 145 D. Park, A. Kandel, G. Langholz, “Genetic-based new fuzz reasoning models with application to fuzzy control”, IEEE Transactions on systems, man and cybernetics 24 (1994) 39.
- 146 T. Procyk, E. Mamdani, “A linguistic self-organizing process controller”, Automatica 15 (1979) 15.
- 147 R. Tansheit, E. Scharf, “Experiments with the use of a rule-based self-organizing controller for robotics applications”, Fuzzy Sets and Systems 26 (1988) 195.
- 148 L. Journaler, D. Goldberg, J. Hollanid, “Classifier systems and genetic algorithms”, Artificial Intelligence 40 (1989) 235.
- 149 T. Goldberg: Genetic Algorithms in Search, Optimizations and Machine Learning, Addison Wesley, Menlo Park 1989.
- 150 D. Park, A. Kandel, G. Langholz, “Genetic based new fuzzy reasoning models with application to fuzzy control”, IEEE Transactions on systems, man and cybernetics 24 (1994) 39.
- 151
M. Sugeno,
T. Yasukawa,
“A fuzzy-logic based approach to qualitative modeling”,
IEEE Transactions on Fuzzy Systems
1
(1993)
7.
10.1109/TFUZZ.1993.390281 Google Scholar
- 152 Y. Yoshinari, W. Pedrycz, K. Hirota, “Construction of fuzzy models through clustering-techniques”, Fuzzy Sets and Systems 78 (1996) 1.
- 153
J. Keller,
H. Tahani,
“Implementation of conjunctive and disjunctive fuzzy logic rules with neural networks”,
International Journal of Approximate Reasoning
6
(1992)
221.
10.1016/0888-613X(92)90018-U Google Scholar
- 154 J. Jang, C. Sun: “Neuro-fuzzy modeling and control”, Proceedings of the IEEE 83, 1995, 378–406.
- 155 K. Konstantinov, T. Yoshida, “Knowledge-based control of fermentation processes”, Biotechnology and Bioengineering 39 (1992) 479.
- 156 M. Dohnal, “Fuzzy bioengineering models”, Biotechnology and Bioengineering 27 (1985) 1146.
- 157 K. Konstantinov, T. Yoshida, “Physiological state control of fermentation processes”, Biotechnology and Bioengineering 33 (1989) 1145.
- 158 G. Annadurai, S.R. Babu, V.R. Srinivasamoorthy, “Mathematical modeling of phenol degradation system using fuzzy comprehensive evaluation”, Bioprocess Engineering 23 (2000) 599.
- 159 Ch. Venkateswarlu, K.V.-S. Naidu, “Dynamic fuzzy model based predictive controller for a biochemical reactor”, Bioprocess-Engineering 23 (2000) 113.
- 160 B. Satishkumar; M. Chidambaram, “Control of unstable bioreactor using fuzzy tuned PI controller”, Bioprocess Engineering 20 (1999) 127.
- 161 T. Miskiewicz, A. Kasperski, “A fuzzy logic controller to control nutrient dosage in a fed-batch baker's yeast process”, Biotechnology-Letters 22 (2000) 1685.
- 162 H. Honda, T. Kobayashi, “Fuzzy control of bioprocess”, Journal of Bioscience and Bioengineering 89 (2000) 401.
- 163 T. Tanaka. M. Taya, “Reduction in operator supervision time using a modified malfunction detection system with fuzzy inference in an industrial-scale fermentation of alkaline cellulase”, Journal of Bioscience and Bioengineering 91 (2001) 106.
- 164 R. Berkholz, D. Roehlig, R. Guthke, “Data and knowledge based experimental design for fermentation process optimization”, Enzyme and Microbial Technology 27 (2000) 784.
- 165 B. Yuan, X-Z Wang, T. Morris, “Software analyser design using data mining technology for toxicity prediction of aqueous effluents”, Waste-Management 20 (2000) 677.
- 166 C.H. Sing, B. Postlethwaite, “Fuzzy relational model-based control applying stochastic and iterative methods for model identification”, Trans. IchemE. 74 (1996) 70.
- 167
G. Cybenko,
“Approximation by superposition of a sigmoidal function”,
Math. Control Signals Systems
2
(1989)
303.
10.1007/BF02551274 Google Scholar
- 168 K. Hornik, M. Stinchcombe, H. White, “Multilayer feedforward networks are universal approximators”, Neural Networks 2 (1989) 359.
- 169 R.F. Thompson: The brain: An Introduction to Neuroscience, W.H. Freeman & Company, New York 1985.
- 170 V.M. Saucedo, B. Eikens, M.N. Karim: Identification techniques for a recombinant fed-batch fermentation for ethanol production, in E. Galindo and O.T. Ramirez, (ed.): Advances in bioprocess engineering, Kluwer Academic Press, Amsterdam 1994.
- 171 P. Brockwell, R.A. Davis: Time series: theory and methods, 2nd ed., Springer, New York 1992.
- 172 U. Saner; S. Stephanopoulus: Application of pattern recognition techniques to fermentation data analysisi, 123–128. In M.N. Karim and G. Stephanopoulos (ed.), Modeling and control of biotechnical processes. Oxford: Pergamon Press (1992).
- 173 S.E. Fahlman, C. Lebeire: The cascade correlation learning architecture”, in D.S. Touretzky, (ed.): Advances in neural information processing system, Morgan Kaufmann Publisher, Los Angeles 1990.
- 174 B. Eikens, M.N. Karim: “Real-time control of a waste neutralization process using radial basis functions”, Proc. ADCHEM’94 Conf., Kyoto, 1994 pp. 125–130.
- 175 A.K. Pavlou, N. Magan, D. Sharp, J. Brown, H. Barr, A.P.F. Turner, “An intelligent rapid odour recognition model in discrimination of Helicobacter pylori and other gastroesophageal isolates in vitro”, Biosensors and Bioelectronics 15 (2000) 333.
- 176
R.M. Stuetz,
S. George,
R.A. Fenner,
S.J. Hall,
“Monitoring wastewater BOD using a non-specific sensor array”,
Journal of Chemical Technology and Biotechnology
74
(1999)
1069.
10.1002/(SICI)1097-4660(199911)74:11<1069::AID-JCTB154>3.0.CO;2-2 CAS Web of Science® Google Scholar
- 177 C.G. Raptis, C.I. Siettos, C.T. Kiranoudis, G.V. Bafas, “Classification of aged wine distillates using fuzzy and neural network systems”, Journal of Food Engineering 46 (2000) 267.
- 178 C.H.Q. Ding:, I. Dubchak, “Multi-class protein fold recognition using support vector machines and neural networks”, Bioinformatics 17 (2001) 349.
- 179 T. Morimoto, T. Takeuchi, H. Miyata, Y. Hashimoto, “Pattern recognition of fruit shape based on the concept of chaos and neural networks”, Computers and Electronics in Agriculture 26 (2000) 171.
- 180 A. Halme, A. Visala, J. Kankare: Functional state concept in modeling biotechnological processes, in M.N. Karim, and G. Stephanopoulos, (ed.): Modeling and control of biotechnical processes, Pergamon Press, Oxford 1992, pp. 153–158
- 181 S. Linko, J. Juopa, Y.H. Zhu, “Neural networks as software sensors in enzyme procduction”, J. Biotechnology 52 (1997) 257.
- 182 J. Glassey, M. Ignova, A.C. Ward, G.A. Montague, A.J. Morris, “Bioprocess supervision, neural networks and knowledge based systems”, J. Biotechnolgy 52 (1997) 201.
- 183 D.S. Lee, J.M. Park, “Neural network modeling for online estimation of nutrient dynamics in a sequentially operated batch reactor”, J. Biotechnol. 75 (1999) 229.
- 184 A. Tholudur, W.F. Ramirez, J.D. McMillan, “Mathematical modeling and optimization of cellulase protein production using Trichoderma reesei RL-P37”, Biotechnology and Bioengineering 66 (1999) 1.
- 185 R.R. Leal, P. Butler, P. Lane, P.A. Payne, “Data fusion and artificial neural networks for biomass estimation”, IEEE Proc. Sci. Meas. Technol. 144 (1997) 69.
- 186 M.A. Hussain, “Review of the applications of neural networks in chemical process control — simulation and online implementation”, Artificial Intelligence in Engineering 13 (1999) 55.
- 187 M. Benne, P.B. Grondin, J.P. Chabriat, P. Herve, “Artificial neural networks for modeling and predictive control of an industrial evaporation process”, Journal of Food Engineering 46 (2000) 227.
- 188 J.L. Casti: Reality Rules: I. Picturing the world in mathematics — the fundamentals, John Wiley & Sons, New York 1992.
- 189 J.L. Casti: Reality Rules: I. Picturing the world in mathematics — the frontier, John Wiley & Sons, New York 1992.
- 190 A.E. Brysonk: Dynamic Optimization. Menlo Park: Addison Wesley Longman, Ins. (1999).
- 191
R. Unbehauen:
Systemtheorie 1- mehrdimensionale, adaptive und nichtlineare Systeme,
7th ed.,
Oldenbourg Verlag,
München
1998.
10.1524/9783486599046 Google Scholar
- 192
K.S. Narenda,
K. Parthasarathy,
“Identification and Control of Dynamical Systems using neural networks”,
IEEE Transaction of neural networks
1
(1990)
4.
10.1109/72.80202 Google Scholar
- 193
M. Smithson:
Ignorance and uncertainty: Emerging Paradigms. In
New York:
Springer Verlag
(1989).
10.1007/978-1-4612-3628-3 Google Scholar
- 194 B.M. Ayyub; M.M. Gupta: Uncertainty Modeling and Analysis: Theory and Applications. In: L. KanalN.; A. Rosenfeld (eds.) Machine Intelligence and Pattern Recognition. Amsterdam: Elsevier (1994).
- 195 M. Meyer: Operation Research — Systemforschung: Eine Einführung in die praktische Bedeutung. Stuttgart: Fischer (1990).
- 196 T. Siimes, P. Kinko, C. von Numers, M. Nakajjima, I. Endo, “Real-time fuzzy-knowledge-based control of baker's yeast production”, Biotechnol. Bioeng. 45 (1995) 135.
- 197 K.B. Konstantinov, T. Yoshida, “Knowledge-based control of fermentation processes”, Biotechnol. Bioeng. 39 (1992) 479.
- 198 Ch. Venkateswarlu, K.V.S. Naidu:, “Dynamic fuzzy model based predictive controller for a biochemical reactor”, Bioprocess-Engineering 23 (2000) 113.
- 199 K. Nakano, R. Katsu, K. Tada, M. Matsumura, “Production of highly concentrated xylitol by Candida magnoliae under a microaerobic condition maintained by simple fuzzy control”, Journal-of-Bioscience-and-Bioengineering 89 (2000) 372.
- 200 T. Miskiewicz, A. Kasperski, “A fuzzy logic controller to control nutrient dosage in a fed-batch baker's yeast process” Biotechnology-Letters 22 (2000), 2000.
- 201 K. Kovarova-Kovar, S. Gehlen, A. Kunze, T. Keller, R. von Daniken, M. Kolb, P.G.M. van LoonAdolphus, “Application of model-predictive control based on artificial neural networks to optimize the fed-batch process for riboflavin production”, Journal of Biotechnology 79 (2000) 39.
- 202 H.W. Chen, N.B. Chang, “Water pollution control in the river basin by fuzzy genetic algorithm-based multiobjective programming modeling”, Water Science and Technology 37 (1998) 55.
- 203 C.C. Shih, K. Zuo, W.T. Wu: “Optimal fed-batch culture for penicillin G production via a hybrid neural model and a real-coded genetic algorithm”, Proceedings for the 7th international conference on computer applications in biotechnology, CAB 7, Oxford 1998, pp. 51–54.
- 204 J.E. Bailey, “Toward a science of metabolic engineering”, Science 252 (1991) 1668.
- 205 G. Stephanopoulos, J.J. Vallino, “Network rifidity and metabolic engineering in metabolite overproduction”, Science 252 (1991) 1675.
- 206
N. Takiguchi,
H. Shimizu,
S. Shioya,
“An online physiological state recognition system for the lysine fermentation process based on a metabolic reaction model”,
Biotechnol & Bioeng.
55
(1997)
170.
10.1002/(SICI)1097-0290(19970705)55:1<170::AID-BIT18>3.0.CO;2-Q CAS PubMed Web of Science® Google Scholar
- 207
J. Nielsen,
“Metabolic engineering: Techniques for analysis of targets for genetic manipulations”,
Biotechnology & Bioengineering
58
(1998)
125.
10.1002/(SICI)1097-0290(19980420)58:2/3<125::AID-BIT3>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 208 R. Brown G.; P. Hwang Y.C.: Introduction to random signals and applied kalman filtering 3rd ed. New York: John Wiley & Sons, New York 1997.
- 209 A. Kamina, R.W. Makuch, H. Zhao, “A stochastic modeling or early HIV-1 population dynamics”, Mathematical Bioscience 170 (2001) 187.
- 210 Q. Zheng, “A stochastic two phase growth model”, Bulletin of Mathematical biology 60 (1998) 151.
- 211 G.U. Yule: A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis, in F.R.S. Phil. Trans. R. Soc. Lond. B213 1924, pp. 21–87.
- 212
A. Kolmogorov,
“On the theory of markov chains”,
Mathematische Annalen
112
(1936)
155.
10.1007/BF01565412 Google Scholar
- 213 T. Rädler: Modellierung and Simulation von Abfülllinien, VDI-Verlag Düsseldorf 1999.
- 214 H. Tijms: Stochastic Modeling and Analysis: A computional Approach. New York: John Wiley and Sons (1986).
- 215 L. Anderssson, L. Stradenberg, L. Haggstrom, S. Enfors, “Modeling of high cell density fed-batch cultivation”, FEMS Microbiol. Rev. 14 (1994) 39.
- 216 V. Saucedo, M.N. Karim, “Online Optimization of stochastic processes using markov decision processes”, Comp. Chem. Eng. 20 (1996) 701.
- 217 P. Mosterman, G. Biswas, “A comprehensive methodology for building hybrid models of physical systems”, Artificial Intelligence 121 (2000) 171.
- 218 R. Tenno, P. Uronen, “State and parameter estimation for wastewater treatment processes using a stochastic model”, Control Engineering Practise 3 (1995) 793.
- 219 T. Yoshida, S. Yoshida: “Horizon of bioprocess systems engineering”, Proceedings fo the 7th international conference on computer applications in biotechnology, CAB 7, Oxford 1998.
- 220 A. Gelb: Applied optimal estimation. Cambridge: MIT Press (1996).
- 221 B. Hitzmann, O. Broxtermann, Y.L. Cha, O. Sobieh, E. Staerk, T. Scheper, “The control of glucose concentration during yeast fed-batch cultivation using a fast measurement complemented by an extended Kalman filter”, Bioprocess Engineering 23 (2000) 337.
- 222 W.Y. Svrced, R.F. Elliott, J.E. Zajic, “The extended Kalman filter applied to a continuous culture model”, Biotechnol. Bioeng. 16 (1974) 827.
- 223 M. Cote, B.P.A. Grandjean:, P. Lessard, J. Thibault, “Dynamic modeling of the activated sludge process: improving prediction using neural networks”, Water Research 29 (1995) 995.
- 224
H.J.L. van Can,
H.A.B. te Brakke,
C. Hellinga,
K.C.A.M. Leyben,
“An efficient model development strategy for bioprocesses based on neural networks in macroscopic balances”,
Biotechnol. Bioeng.
54
(1997)
549.
10.1002/(SICI)1097-0290(19970620)54:6<549::AID-BIT6>3.0.CO;2-J PubMed Web of Science® Google Scholar
- 225 B. Center, B.P. Verma, “Fuzzy Logic for biological and agriculture systems”, Artificial intelligence Reviews 12 (1998) 213.
Further Reading
- M. D. Carmo Nicoletti, L. C. Jain: Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control, Springer, Berlin 2009.
-
A. Condon,
D. Harel,
J. N. Kok,
A. Salomaa,
E. Winfree:
Algorithmic Bioprocesses,
Springer,
Dordrecht
2009.
10.1007/978-3-540-88869-7 Google Scholar
-
D. Dochain:
Bioprocess Control,
Wiley,
Hoboken, NJ
2008.
10.1002/9780470611128 Google Scholar
-
E. Heinzle:
Development of Sustainable Bioprocesses,
Wiley,
Chichester
2006.
10.1002/9780470058916 Google Scholar
- S. S. Sablani: Handbook of Food and Bioprocess Modeling Techniques, CRC Press, Boca Raton 2007.