Absorption, 1. Fundamentals
This is not the most recent version, view other versions
This version
Absorption, 1. Fundamentals
Johann Schlauer,
Johann Schlauer
Lurgi GmbH, Frankfurt, Federal Republic of Germany
Search for more papers by this authorJohann Schlauer,
Johann Schlauer
Lurgi GmbH, Frankfurt, Federal Republic of Germany
Search for more papers by this authorAbstract
The article contains sections titled:
1. |
Equilibrium of Gas Solubility |
1.1. |
Introduction |
1.2. |
Gas-Phase Fugacity |
1.3. |
Liquid-Phase Fugacity and Activity |
1.4. |
Physical Absorption |
1.5. |
Chemical Absorption |
1.6. |
Enthalpy and Absorption Equilibrium |
2. |
Mass Transfer |
2.1. |
Introduction |
2.2. |
Mass Transfer Coefficients |
2.3. |
Effect of Solute Concentration |
2.4. |
Correlation of Mass Transfer Coefficients |
2.5. |
Mass Transfer and Chemical Reaction |
2.6. |
Modeling of Mass Transfer with Chemical Reaction |
References
- 1 S. W. Walas: Phase Equilibria in Chemical Engineering, Butterworth, Stoneham, MA 1985.
- 2 J. M. Prausnitz, T. F. Andersen, E. A. Grens, C. A. Eckert, R. Hsieh, J. P. O'Connell: Computer Calculations for Multicomponent Vapor-Liquid Equilibria, Prentice Hall, Englewood Cliffs, N.J. 1980.
- 3 B. I. Lee, M. G. Kesler: “A Generalized Thermodynamic Correlation Based on Tree-Parameter Corresponding States,” AIChE J. 21 (1975) 510 – 527.
- 4 S. Westmeier, W. H. Hanthal, G. Hecht, R. Kümmel, D. Lempe, F. Rösler, M. Rotter, I. Westmeier, W. Wettengel: “Stoffwerte, Verfahrenstechnische Berechnungsmethoden,” Part 7, VCH Verlagsgesellschaft, Weinheim, New York 1986.
- 5 U. Plöcker, H. Knapp, J. M. Prausnitz: “Calculation of High-Pressure Vapour-Liquid Equilibria from a Corresponding States Correlation with Emphasis on Asymmetric Mixtures,” Ind. Eng. Chem. Process Des. Dev. 17 (1978) 324 – 332.
- 6 H. Renon, J. M. Prausnitz: “Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures,” AIChe J. 14 (1968) 135 – 144.
- 7 J. Gmehling, B. Kolbe; Angewandte Chemische Thermodynamik für Chemiker, Verfahrenstechniker and Chemieingenieure, Thieme Verlag, Stuttgart 1988.
- 8 A. Trendenslund, P. Rasmussen: “From UNIFAC to SUPERFAC and back ?” Fluid Phase Equilib. 24 (1985) 115 – 150.
- 9 Dechema Data Series (1977 ff).
- 10 N. L. Yarym-Agaev, V. G. Matvienko, N. V. Povalyaeva: “Solubility of Hydrogen Sulfide in N-Methylpyrrolidone,” Zh. Prikl. Khim. (Leningrad) 53 (1980) 2456 – 2461.
- 11 Landolt-Börnstein, IV, 4 c, Springer Verlag Berlin, 1976.
- 12 Landolt-Börnstein, IV, 42 c, Springer Verlag Berlin, 1980.
- 13 A. S. Kertes (ed.): Solubility Data Series, Pergamon Press, Oxford 1979 ff.
- 14 W. Weber, S. Zeck, H. Knapp: “Gas Solubilities in Liquid Solvents at High Pressures: Apparatus and Results for Binary and Ternary Systems of N2, CO2 and CH3OH,” Fluid Phase Equilib. 18 (1984) 253 – 278.
- 15 T. Chang, R. W. Rousseau, J. K. Ferrell: “Use of the Soave Modification of the Redlich – Kwong Equation of State for Phase Equilibrium Calculations. System Containing Methanol,” Ind. Eng. Chem. Process Des. Dev. 22 (1983) 462 – 468.
- 16 Y. Hu, Y. Xu, J. Prausnitz: “Molecular Thermodynamics of Gas Solubility,” Fluid Phase Equilib. 23 (1985) 15 – 40.
- 17 MacCoy: J. Am. Chem. Soc. 29 (1903) 437 – 462. (M. S. Litvinenko: “Equilibrium in the System Hydrogen Sulfide and Carbon Dioxide and Solutions of Sodium or Potassium Carbonate,” Zh. Prikl. Khim. 25 (1952) 579 – 595.)
- 18 A. Sievers, A. Fritzsche: “Pottasche Lösung und CO2,” Z. Anorg. Allg. Chem. 133 (1924) 1 – 16.
- 19 C. Harte, E. M. Backer, H. H. Purcell, Ind. Eng. Chem. 25 (1933) no. 5, 528 – 531. (cit. Ref (11) p. 376).
- 20 M. Schingnitz, G. Franke, R. Gall: “Absorptive Entfernung von Kohlendioxid aus Synthesegasen,” Freiberg. Forschungsh. A, A 464 (1969) 37 – 53.
- 21 H. F. Johnstone, “Recovery of Sulfur Dioxide from Waste Gases,” Ind. Eng. Chem. 27 (1935) 587 – 593.
- 22 H. F. Johnstone, H. J. Read, H. C. Blankmeyer: “Recovery of Sulfur Dioxide from Waste Gases,” Ind. Eng. Chem. 30 (1938) 101 – 109.
- 23 K. Y. Park, T. F. Edgar: “Stimulation of the Hot Carbonate Process for Removal of CO2 and H2S from Medium BTU Gas,” Energy Prog. 4 (1984) no. 3, 174 – 181.
- 24 J. S. Tosh, J. H. Field, H. E. Benson, W. P. Haynes: “Equilibrium Study of the System Potassium Carbonate, Potassium Bicarbonate, Carbon Dioxide, and Water,” Rep. Invest. U.S. Bur. Mines 5484 (1959)
- 25 J. S. Tosh, J. H. Field, H. E. Benson, R. B. Anderson: “Equilibrium Pressures of Hydrogen Sulfide and Carbon Dioxide over Solutions of Potassium Carbonate,” Rep. Invest, U.S. Bur. Mines R 5622 (1959),
- 26 P. Wellman, S. Katell: “Hot Carbonate Purification Computer Program,” Inf. Circ. U.S. Bur. Mines 8366 (1968).
- 27
D. W. van Krevelen,
P. J. Hoftijzer,
F. J. Huntjens:
“Composition and Vapor Pressure of Aqueous Solutions of Ammonia, Carbon Dioxode and Hydrogen Sulfide,”
Recl. Trav. Chim. Pays Bas
68
(1949)
191 – 216.
10.1002/recl.19490680213 Google Scholar
- 28 G. Maurer: “Electrolyte Solutions,” Fluid Phase Equilib. 13 (1983) 269 – 296.
- 29 F. X. Ball, W. Fürst, H. Renon: “An NRTL Model for Representation and Prediction of Deviation from Ideality of Electrolyte Solutions Compared to the Models of Chen (1982) and Pitzer (1973),” AIChE J. 3 (1985) no. 3, 392 – 399.
- 30 E. M. Pawlikowski, J. Newmann, J. M. Prausnitz: “Phase Equilibria for Aqueous Solutions of Ammonia and Carbon Dioxide,” Ind. Eng. Chem. Process Des. Div. 21 (1982) 764 – 770.
- 31 R. Stimming, D. Pape, S. Stöck, W. Wettengel, H. Freydank: “Dampf-Flüssigkeit-Gleichgewichte im System Ammoniak-Schwefelwasserstoff-Wasser,” Chem. Tech. (Leipzig) 37 (1985) no. 1, 27 – 30.
- 32 B. E. Roberts, P. R. Tremaine: “Vapour Liquid Equilibrium Calculations for Dilute Aqueous Solutions of CO2, H2S, NH3, and NaOH to 300 °C,” Can. J. Chem. 63 (1985) 294 – 300.
- 33 A. Newman: “Sour Water Design by Charts”, Hydrocarbon Processing 70 (1991) no. 9, 145 – 150; 70 (1991) no. 10, 101 – 106; 70 (1991) no. 11, 139 – 141.
- 34 B. Rumpf, F. Kurz, G. Maurer: “Vapor – Liquid – Solid Phase Equilibria in the System NH3 – CO2 – H2O from Around 310 to 470 K: New Experimental Data and Modeling”, Fluid Phase Equilib. 104 (1995) 261 – 275.
- 35 V. Bieling, F. Kurz, B. Rumpf, G. Maurer: “Simultaneous Solubility of Ammonia and Carbon Dioxide in Aqueous Solution of Sodium Sulfate in the Temperature Range 313 – 393 K and Pressures up to 3 MPa”, Ind. Eng. Chem. Res. 34 (1995) 1449 – 1460.
- 36 K. L. Kent, B. Eisenberg: “Better Data for Amine Treating,” Hydrocarbon Processing 55 (1976) no. 2, 87 – 90.
- 37 C. C. Chen, A. Ng: “Determine Equilibrium Absorption Rates,“ Hydrocarbon Process. 59 (1980) no. 4, 122 – 126.
- 38 R. A. Tomcej, F. D. Otto: “Computer Simulation and Design of Amine Treating Units,” Energy Process. Can. (1983) 27 – 32.
- 39 D. L. Erwin: ChemCalc 11 AMSIM (Amine Gas Treating Plant Simulator) Gulf Publishing Comp. (1987).
- 40 O. R. Rivas, J. M. Prausnitz: “Sweeting of Sour Natural Gas by Mixed-Solvent Absorption: Solubilities of Ethane, Carbon Dioxide, and Hydrogen Sulfide in Mixtures of Physical and Chemical Solvents,” AIChE J. 25 (1979) no. 6, 975 – 984.
- 41 D. Lal, F. D. Otto, A. E. Mather: “Solubility of H2S and CO2 in a Diethanolamine Solution at Low Partial Pressures,” Can. J. Chem. Eng. 63 (1985) 681 – 685.
- 42 R. H. Weiland, M. Rawal, R. G. Rice: “Stripping of Carbon Dioxide from Monoethanolamine Solutions in a Packed Column,” AIChE J. 28 (1982) no. 6, 963 – 973.
- 43 P. V. Danckwerts, McNeil: “The Absorption of Carbon Dioxide into Aqueous Amine Solutions and the Effects of Catalysis,” Trans. Inst. Chem. Eng. 45 (1967) T32 – T49.
- 44 G. Sartori, D. W. Savage: “Sterically Hindered Amines for CO2 Removal from Gases,” Ind. Eng. Chem. Fundam. 22 (1983) 239 – 249.
- 45 D. W. Savage, E. W. Funk, W. C. Yu, G. Astarita: “Selective Absorption of H2S and CO2 into Aqueous Solutions of Methyldiethanolamine,” Ind. Eng. Chem. Fundam. 25 (1986) 326 – 330.
- 46 J. I. Lee, F. D. Otto, A. E. Mather: “Design Data for Diethanolamine Acid Gas Treating Systems,” Gas Processing/Canada 65 (1973) March-April, 26 – 34.
- 47 J. I. Lee, F. D. Otto, A. E. Mather: “Solubility of Hydrogen Sulfide in Aqueous Diethanolamine Solutions at High Pressure,” J. Chem. Eng. Data 18 (1973) 71 – 73.
- 48 E. E. Isaacs, F. D. Otto, A. E. Mather: “Solubility of Hydrogen Sulfide and Carbon Dioxide in an Aqueous Diisopropanolamine Solution,” J. Chem. Eng. Data 22 (1977) 71 — 73.
- 49 E. E. Isaacs, F. D. Otto, A. E. Mather: “The Solubility of Mixtures of Carbon Dioxide and Hydrogen Sulfide in an Aqueous DIPA Solution,” Can. J. Chem. Eng. 55 (1977) 210 – 212.
- 50 J. L. Martin, F. D. Otto, A. E. Mather: “Solubility of Hydrogen Sulfide and Carbon Dioxide in a Diglycolamine Solution,” J. Chem. Eng. Data 23 (1978) 163 – 164.
- 51 E. E. Isaacs, F. D. Otto, A. E. Mather: “Solubility of Mixtures of H2S and CO2 in a Monoethanolamine Solution at Low Partial Pressures,” J. Chem. Eng. Data 25 (1980) 118 – 120.
- 52 F.-Y. Jou, F. D. Otto, A. E. Mather: “Solubility of H2S and CO2 in Aqueous Methyldiethanolamine Solutions,” Ind. Eng. Chem. Process Des. Dev. 21 (1982) 539 – 544.
- 53 F.-Y. Jou, F. D. Otto, A. E. Mather: “Equilibria of H2S and CO2 in Triethanolamine Solutions,” Can. J. Chem. Eng. 63 (1985) 122 – 125.
- 54 M. L. Kennard, A. Meisen: “Solubility of Carbon Dioxide in Aqueous Diethanolamine Solutions at Elevated Temperatures and Pressures,” J. Chem. Eng. Data 29 (1984) 309 – 312.
- 55 G. Kuranov, B. Rumpf, N. A. Smirnova, G. Maurer: “Solubility of Single Gases Carbon Dioxide and Hydrogen Sulfide in Aqueous Solutions of A-Methydiethanolamine in the Temperature Range 313 – 413 K at Pressures up to 5 MPa”, Ind. Eng. Chem. Res. 35 (1996) 1959 – 1966.
- 56 F.-Y. Jou, J. J. Carroll, A. E. Mather, F. D. Otto: “The Solubility of Carbon Dioxide and Hydrogen Sulfide in a 35 wt % Aqueous Solution of Methydiethanolamine”, Can. J. Chem. Eng. 71 (1993) 264 – 268.
- 57 K.-P. Shen, M.-H. Li: “Solubility of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine with Methyldiethanolamine”, J. Chem. Eng. Data 37 (1994) 96 – 100.
- 58 F.-Y. Jou, F. D. Otto, A. E. Mather: “Vapor – Liquid Equilibrium of Carbon Dioxide in Aqueous Mixtures of Monoethanolamine and Methydiethanolamine”, Ind. Eng. Chem. Res. 33 (1994) 2002 – 2005.
- 59 B. E. Roberts, A. E. Mather: “Solubility of CO2 and H2S in a Hindered Amine Solution”, Chem. Eng. Comm. 64 (1988) 105 – 111.
- 60 T. T. Teng, A. E. Mather: “Solubility of CO2, H2S and their Mixtures in an AMP Solution”, Can. J. Chem. Eng. 67 (1989) 846 – 850.
- 61 D. M. Augsten, G. T. Rochelle, X. Peng, C. C. Chen: “Model of Vapor – Liquid Equilibria for Aqueous Acid Gas – Alkanolamine Systems Using the Electrolyte – NRTL Equation”, Ind. Eng. Chem. Res. 28 (1989) 1060 – 1073.
- 62 D. M. Augsten, G. T. Rochelle, C. C. Chen: “Model of Vapor – Liquid Equilibria for Aqueous Acid Gas – Alkanolamine Systems. 2. Representation of H2S and CO2 Solubility in Aqueous MDEA and CO2 Solubility in Aqueous Mixture of MDEA with MEA or DEA”, Ind. Eng. Chem. Res. 30 (1991) 543 – 555.
- 63 Y. G. Li, A. E. Mather: “Correlation and Prediction of the Solubility of Carbon Dioxide in a Mixed Alkanolamine Solution”, Ind. Eng. Chem. Res. 33 (1994) 2006 – 2015.
- 64 Y. G. Li, A. E. Mather: “Correlation and Prediction of the Solubility of CO2 and H2S in Aqueous Solutions of Triethanolamine.” Ind. Eng. Chem. Res. 35 (1996) 4804 – 4809.
- 65 J. Schlauer: “Eine neue Absorptions-Isotherme zur Korrelation von simultanen Löslichkeitsgleichgewichten von saueren Gasen in basischen Lösungsmitteln”, presented at the GVC meeting, Bamberg, Germany, May 7, 1993.
- 66 D. Dang, D. P. Tassios: “Prediction of Enthalpies of Mixing with a UNIFAC Model,” Ind. Eng. Chem. Process Des. Dev. 25 (1986) 22 – 31.
General References
- 67 R. H. Perry, D. W. Green, J. O Maloney: Chemical Engineers' Handbook. 5th ed., McGraw-Hill, New York 1984, pp. 14–1 – 14–40.
- 68 R. B. Bird, W. E. Steward, E. N. Lightfoot: Transport Phenomena, J. Wiley & Sons, New York 1965 ff.
- 69 G. Astarita: Mass Transfer with Chemical Reaction Elsevier, Amsterdam 1967.
- 70 P. V. Danckwerts: Gas-Liquid Reactions, McGraw-Hill, New York 1970.
- 71 G. Astarita, D. W. Savage, A. L. Bisio: Gas Treating with Chemical Solvents, Wiley & Sons, New York 1983.
- 72 R. Taylor, R. Krishna: Multicomponent Mass Transfer, Wiley, New York 1993.
Specific References
- 73 P. V. Danckwerts, M. M. Sharma: “The Absorption of Carbon Dioxide into Solutions of Alkalis and Amines,” The Chemical Engineer (1966) 244 – 280.
- 74 K. Sridharan, M. M. Sharma: “New Systems and Methods for the Measurements of Effective Interfacial Area and Mass Transfer Coefficients in Gas-Liquid Contactors,” Chem. Eng. Sci. 31 (1976) 767 – 774.
- 75 G. E. H. Joosten, P. V. Danckwerts: “Chemical Reactions and Effective Interfacial Areas in Gas Absorption,” Chem. Eng. Sci. 28 (1973) 453 – 461.
- 76 H. L. Schulman, C. F. Ulbrich, A. Z. Proulx, J. O. Zimmermann: “Performance of Packed Columns III: Wetted and Effective Interfacial Areas, Gas and Liquid Phase Mass Transfer Rates,” AIChE J. 1 (1955) 253.
- 77 S. P. S. Andrew: “Aspects of Gas/Liquid Mass Transfer,” Acta Technologia Chimica (1961) 153.
- 78 K. Onda, H. Takeuchi, Y. Okumoto: “Mass Transfer Coefficients between Gas and Liquid Phases in Packed Columns,” J. Chem. Eng. Japan 1 (1968) 56 – 62.
- 79 L. T. Thuy, R. H. Weiland: “Mechanisms of Gas Desorption from Aqueous Solution,” Ind. Eng. Chem. Fundam. 15 (1976) 286 – 293.
- 80 R. H. Weiland, M. Rawal, G. Rice: “Stripping of Carbon Dioxide from Monoethanolamine Solutions in a Packed Column,” AIChE J. 28 (1982) 963 – 973.
- 81 R. D. Scheffe, R. H. Weiland: “Mass-Transfer Characteristics of Valve Trays,” Ind. Eng. Chem. Res. 26 (1987) 228 – 236.
- 82 B. Pocher, K. Schmok, G. Wünsch: “Experimentelle Untersuchungen zum Studium des CO2-Stofftransportes bei der Gasreinigung mittels der physikalischen Tieftemperatur-Absorption,” Freiberg. Forschungsh. A, A 698 (1984) 5 – 78.
- 83 M. L. Yüksel, E. U. Schlünder: “Heat and Mass Transfer in Non-Isothermal Absorption of Gases in Falling Liquid Film. Part I and Part II,” Chem. Eng. Process. 22 (1987) 193 – 213.
- 84 B. Hörner, U. Viebahn, K. Dialer: “Mass Transfer in Turbulent Liquid during Absorption,” Chem. Eng. Sci. 41 (1986) 1723 – 1733.
- 85 H. Hikita, Y. Konishi: “Desorption of Carbon Dioxide from Supersaturated Water in an Agitated Vessel,” AIChE J. 30 (1984) 945 – 951.
- 86
D. W. van Krewelen,
P. J. Hoftijzer:
“Kinetics of Gas-Liquid Reactions. Part I. General Theory,”
Rec. Trav. Chim.
67
(1948)
563.
10.1002/recl.19480670708 Google Scholar
- 87 P. V. Danckwerts: “Significance of Liquid-Film Coefficients in Gas Absorption,” Ind. Eng. Chem. 43 (1951) 1460.
- 88 P. V. Danckwerts: “The Reaction of CO2 with Ethanolamines,” Chem. Eng. Sci. 34 (1979) 443 – 446.
- 89 B. R. W. Pinsert, L. Pearson, F. J. W. Roughton: “The Kinetics of Combination of CO2 with OH−,” Trans. Faraday Soc. 52 (1956) 1512.
- 90 M. M. Sharma: “Kinetics of Reaction of Carbonyl Sulfide and Carbon Dioxide with Amines and Catalysis with Brønsted Bases of the Hydrolysis of COS.” Trans. Faraday Soc. 61 (1965) 681 – 688.
- 91 H. Hikita, S. Asai, H. Ishikawa, M. Honda: “The Kinetics of Reaction of Carbon Dioxide with Monoethanolamine, Diethanolamine and Triethanolamine by Rapid Mixing Method,” Chem. Eng. J. (Lausanne) 13 (1977) 7 – 12.
- 92 W. C. Yu, G. Astarita, D. W. Savage: “Kinetics of Carbon Dioxide Reaction in Solutions of Methyldiethanolamine,” Chem. Eng. Sci. 40 (1985) 1585 – 1590.
- 93 G. F. Versteeg: Mass Transfer and Chemical Reaction Kinetics in Acid Gas Treating Processes, Twente University Enschede, NL, Thesis 1987.
- 94 N. Haimour, A. Didarian, O. C. Sandall: “Kinetics of the Reaction Between Carbon Dioxide and Methyldiethanolamine,” Chem. Eng. Sci. 42 (1987) 1393 – 1398.
- 95 W. Weisweiler, R. Blumhofer, T. Westermann: “Absorption of Nitrogen Monoxide in Aqueous Solutions Containing Sulfite and Transition-Metal Chelates such as Fe(II)-EDTA, Fe(II)-NTA, Co(II)-Trien and Co(II)-Treten,” Chem. Eng. Process. 20 (1986) 155 – 166.
- 96 R. G. Rice, E. L. Benoit: “An Experimental Pressure—Response Method to Measure Gas—Liquid Kinetics,” Chem. Eng. Sci. 41 (1986) 2629 – 2638.
- 97 D. B. Hobson, P. J. Richardson, P. J. Robinson, E. A. Hewitt, I. Smith: “Kinetics of the Oxygen—Sulfite Reaction at Waterflood Concentrations: Effect of Catalyst and Seawater Medium,” Ind. Eng. Chem. Res. 26 (1987) 1818 – 1822.
- 98 W. Weisweiler: “Naßabsorption von Stickoxiden: Laboruntersuchungen zur Ermittlung der Absorptionskinetik,” Haus Tech. Vortragsveröff. 500 (1986) 75 – 81.
- 99 S. S. Laddha, P. V. Danckwerts: “Reaction of CO2 with Ethanolamines Kinetics from Gas-Absorption,” Chem. Eng. Sci. 36 (1981) 479 – 482.
- 100 M. Caplow, J. Am. Chem. Soc. 90 (1968) 6795.
- 101 P. M. M. Blauwhoff, G. F. Versteeg, W. P. M. van Swaij: “A Study on the Reaction between CO2 and Alkanolamines in Aqueous Solution,” Chem. Eng. Sci. 38 (1983) 1411 – 1429, 39 (1984) 207 – 225.
- 102 E. Sada, H. Kumazawa, Z. Q. Han, H. Matsuyama: “Chemical Kinetics of the Reaction of Carbon Dioxide with Ethanolamine in Nonaqueous Solvents,” AIChE J. 31 (1985) 1297 – 1303.
- 103 P. V. Danckwerts, A. M. Kennedy: “Kinetics of Liquid-Film Processes in Gas Absorption, Part 1: Models of the Absorption Process,” Trans. Inst. Chem. Eng. 32 (1954) 49.
- 104 C. Ouverkerk: “Design for Selective H2S Absorption,” Hydrocarbon Process. 57 (1978) 89 – 94.
- 105 A. E. Cornelissen: “Simulation of Absorption H2S and CO2 into Aqueous Alkanolamines in Tray and Packed Columns,” Trans. Inst. Chem. Eng. 58 (1980) 242 – 250.
- 106 R. Cornelisse, A. A. C. M. Beenackers, F. P. H. van Beckum, W. P. M. van Swaij: “Numerical Calculation of Simultaneous Mass Transfer of Two Gases accompanied by Complex Reversible Reactions,” Chem. Eng. Sci. 35 (1980) 1245 – 1260.
- 107 R. M. Counce, J. J. Perona: “Scrubbing of Gaseous Nitrogen Oxides in Packed Towers,” AIChE. J. 29 (1983) 26 – 32.
- 108 W. C. Yu, G. Astarita: “Selective Absorption of Hydrogen Sulfide in Tertiary Amine Solution,” and “Design of Packed Towers for Selective Chemical Absorption,” Chem. Eng. Sci.42 (1987) 419 – 433.
Further Reading
-
F. G. Kerry:
Industrial gas handbook,
CRC Press,
Boca Raton, Fla.
2007.
10.1201/9781420008265 Google Scholar
- M. Laso, U. von Stockar: Absorption, Kirk Othmer Encyclopedia of Chemical Technology, 5th edition, vol. 1, p. 26–99, John Wiley & Sons, Hoboken, NJ, 2004, online: DOI: 10.1002/0471238961.0102191519201503.a01.pub2 (October 2003)
- J. D. Seader, E. J. Henley: Separation process principles, 2. ed., Wiley, Hoboken, NJ 2006.