Visualization Techniques in Process Engineering
First published: 15 January 2013
Abstract
The article contains sections titled:
1. |
Introduction |
2. |
Optical Visualization Techniques |
3. |
Tomographic Visualization Techniques |
3.1. |
Tomographic Measurements and Data Analysis |
3.2. |
Conductive Tomography |
3.3. |
Capacitance Tomography |
3.4. |
Optical Tomography |
3.5. |
X-Ray Tomography |
3.6. |
Nuclear Magnetic Resonance (NMR) |
4. |
Applications of Tomography |
5. |
Future Perspectives |
References
- 1 F. Mayinger, O. Feldmann (eds.): Optical Measurement — Techniques and Applications, Springer Verlag, Berlin 2001.
- 2 M. Lehner, D. Mewes, U. Dinglreiter, R. Tauscher (eds.): Applied Optical Measurements, Springer Verlag, Berlin 1999.
- 3 R.S. Das, Y.K. Agrawal: “Raman spectroscopy: Recent advancements, techniques and applications”, Vib. Spectrosc. 57 (2011) 163–176.
- 4 G.M. Carlomagno, G. Cardone: “Infrared thermography for convective heat transfer measurements”, Exp. Fluids 49 (2010) 1187–1218.
- 5 O. Feldmann, P. Gebhard, F. Mayinger: “Evaluation of Pulsed Laser Holograms of Flashing Sprays by Digital Image and Holographic Particle Image Velocimetry,” OECD/CSNI Specialist Meeting on Advanced Instrumentation and Measurement Techniques, Santa Barbara, March 17 – 20, 1997.
- 6 A. Fellhölter, D. Mewes: “Mixing of large volume flows of gas in pipes and ducts, visualization of concentration profiles”, Chem. Eng. Technol. 17 (1994) 227–234.
- 7 M. Friederich, D. Mewes: Investigations of instationary temperature fields in non-Newtonian fluids by optical tomography, 5th Int. Symp. on Flow Visualization, 1989, Prague, Hemisphere Publishing, Washington 1989.
- 8 R.J. Adrian, J. Westerweel: Particle Image Velocimetry, Cambridge University Press, New York 2011.
- 9
M. Raffel,
C. Willert,
S. Wereley,
J. Kompenhans:
Particle Image Velocimetry: A Practical Guide,
Springer Verlag,
Heidelberg
2007.
10.1007/978-3-540-72308-0 Google Scholar
- 10 K. Kling, D. Mewes: “Two-colour laser induced fluorescence for the quantification of micro- and macro mixing in stirred vessels”, Chem. Eng. Sci. 59 (2004) 1523–1528.
- 11 M.S. Beck, R.A. Williams, E.A. Hammer, E. Compogrande, M.A. Morris, R.C. Waterfall (eds.): European Concerted Action on Process Tomography (ECAPT), University of Manchester Institute of Technology (UMIST), Manchester: Tomographic Techniques for Process Design and Operation, ECAPT, Manchester, UK, 1992. Process Tomography — A Strategy for Industrial Exploitation, ECAPT, Karlsruhe, Germany, 1993. Process Tomography – A Strategy for Industrial Exploitation, ECAPT, Porto, Spain, 1994. Process Tomography - Implementation for Industrial Process, ECAPT Bergen, Norway, 1995.
- 12 Virtual Centre of Process Tomography (VCIPT)/International Society for Industrial Process Tomography (ISIPT), UMIST (eds.): World Congresses on Industrial Process Tomography (WCIPT), Manchester: WCIPT-1, Buxton, UK, 1999; WCIPT-2, Hannover, Germany, 2001; WCIPT-3, Banff, Canada, 2003; WCIPT-4, Aizu, Japan, 2005; WCIPT-5, Bergen, Norway, 2007; WCIPT-6, Beijing, PR China, 2010; WCIPT-7, Krakov, Poland, 2013.
- 13 Chem. Eng. J., Special Issue, 77 (2000) nos. 1, 2. Meas. Sci. Technol., Special Issue, 15 (2004) 7. IEEE Sensors J., Special Issue, 5 (2005) no. 2. Chem. Eng. J., Special Issue, 130 (2007) nos. 2, 3. Meas. Sci. Technol., Special Issue, 22 (2011) no. 10.
- 14 G.T. Herman: Image Reconstruction from Projections — The Fundamentals of Computerized Tomography, Academic Press, New York 1980.
- 15 V. Kak, M. Slaney: Principles of Computerized Tomographic Imaging, IEEE Press, New York 1988.
- 16 A. Trächtler: Tomographische Methoden in der Messrechnik, Fortschritt-Berichte VDI, Reihe 8, Nr. 897, VDI Verlag, Düsseldorf 2001.
- 17
O. Dössel:
Bildgebende Verfahren in der Medizin,
Springer Verlag,
Berlin
2000.
10.1007/978-3-662-06046-9 Google Scholar
- 18 W.A. Kalender: Computertomography, 2nd ed., Publicis Corp. Publ., Erlangen 2006.
- 19 T.M. Buzug: Computed Tomography, Springer Verlag, Heidelberg 2008.
- 20 A. Gordon, G.T. Herman: “Three-Dimensional Reconstruction from Projections: A Review of Algorithms”, Int. Rev. Cytol. 38 (1974) 111–151.
- 21
F. Natterer,
F. Wübbeling:
Mathematical Methods in Image Reconstruction,
Society for Industrial and Applied Mathematics,
Philadelphia
2001.
10.1137/1.9780898718324 Google Scholar
- 22 J. Radon: “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Abh. Saechs. Akad. Wiss. Leipzig Math.-Naturwiss. Kl. 69 (1917) 262–277.
- 23 G.N. Hounsfield: “Computerized transverse scanning tomography: Part I, Description of the system”, J. Radiol. 46 (1973) 1016–1022.
- 24 A.M. Cormack: “Representation of a function by its line integrals with some radiological applications”, J. Appl. Phys. 34 (1963) 2722–2728; 35 (1964) 2908–2902.
- 25 J. Jia, M. Wang, H.I. Schlaberg, H. Li: “A novel tomographic sensing system for high electrically conductive multiphase flow measurement”, Flow Meas. Instrum. 21 (2010) 184–190.
- 26 N. Reinecke, D. Mewes: “Multielectrode capacitance sensors for the visualization of transient two-phase flows”, Exp. Therm. Fluid Sci. 15 (1997) 253–266.
- 27 N. Reinecke, G. Petritsch, M. Boddem, D. Mewes: “Tomographic Imaging of the Phase Distribution in Two-Phase Slug Flow”, Int. J. Multiphase Flow 24 (1998) 4, 617–634.
- 28 W.Q. Yang, L. Peng: “Image reconstruction algorithms for electrical capacitance tomography”, Meas. Sci. Technol. 14 (2003) R1–R13.
- 29 O. Isaksen: “A review of reconstruction techniques for capacitance tomography”, Meas. Sci. Technol. 7 (1996) 325–337.
- 30
K. Muralidhar:
“Temperature field measurement in buoyancy-driven flows using interferometric tomography”
Annu. Rev. Heat Transfer
12
(2002)
265–375.
10.1615/AnnualRevHeatTransfer.v12.90 Google Scholar
- 31 J.C. Hunter, M.W. Collins: “Three-dimensional refractive index field reconstruction from holographic interferograms”, Int. J. Optoelectron. 4 (1989) 95–132.
- 32 L. Hasseling: Optical tomography in W.-J. Yang (ed.): Handbook of Flow Visualization, Hemisphere, Washington 1989, pp. 307–329.
- 33 D. Mewes, W. Ostendorf, W. Haarde, M. Friederich: Tomographic measurement techniques for process engineering studies in N.P. Cheremisinoff (ed.): Handbook of Heat and Mass Transfer, vol. 3, Gulf Publishers Houston 1989, pp. 951–1021.
- 34 C. Herman, D. Mewes, F. Mayinger: Optical techniques in transport phenomena in A.S. Mujumdar, R.A. Mashelkar (eds.): Advances in Transport Processes, vol. 8, Elsevier Science Publishers, Amsterdam–New York 1992, pp. 1–58.
- 35 D. Mewes, A. Fellhölter: “Visualization of the concentration profiles in the entrance section of a fixed bed catalytic reactor during premixing of two gaseous components”, Chem. Eng. Sci. 49 (1994) 5243–5255.
- 36 K. Salem, E. Tsotsas, D. Mewes: “Tomographic measurement of breakthrough in a packed bed adsorber”, Chem. Eng. Sci. 60 (2005) 517–522.
- 37 M.N.A. Saoir, D.L.A. Fernandes, J. Sa, M. McMaster, K. Kitagawa, C. Hardacre, F. Aiouache: “Visualization of water vapour flow in a packed bed adsorber by near-infrared diffused transmittance tomography”, Chem. Eng. Sci. 66 (2011) 6407–6423.
- 38 M. Buchmann, D. Mewes: “Measurement of the local intensities of segregation with the tomographical dual wavelength photometry”, Can. J. Chem. Eng. 76 (1998) 3, 626–630.
- 39 H. Morneburg (ed.): Bildgebende Systeme für die medizinische Diagnostik, Siemens Publicis MCD Verlag, Erlangen 1995.
- 40 A. Grillenberger, E. Fritsch: Computertomographie: Einführung in ein modernes bildgebendes Verfahren, Facultas Verlag, Wien 2007.
- 41 J. Chaouki, F. Larachi, M.P. Dudukovic: “Noninvasive tomography and velocimetry monitoring of multiphase flows”, Ind. Eng. Chem. Res. 36 (1997) 4476–4503.
- 42 M. Behling, D. Mewes: “Dual-Energy X-ray tomographic measurementof local phase fractions in 3-phase bubble columns”, ASME Joint U.S. – European Fluids Engineering Summer Meeting, Miami, FL, July 17–20, 2006, Paper No. FEDSM2006-98142.
- 43 A. Viva, S. Aferka, E. Brunazzi, P. Marchota, M. Crine, D. Toye: “Processing of X-ray tomographic images: A procedure adapted for the analysis of phase distribution in MellapakPlus and Katapak-SP packings”, Flow Meas. Instrum. 22 (2011) 279–290.
- 44 T.J. Heindel: “A review of X-ray flow visualization with applications to multiphase flows”, J. Fluids Eng. 133 (2011) no. 7, 074001.1–074001.16.
- 45 F. Bloch, W.W. Hansen, M. Packard: “Nuclear induction”, Phys. Rev. 69 (1946) 127.
- 46 E.M. Purcell, H.C. Torrey, R.V. Pound: “ Resonance absorption by nuclear magnetic moment in a solid”, Phys. Rev. 69 (1946) 31–38.
- 47 P.C. Lauterbur: “Medical imaging by nuclear magnetic resonance tomography”, IEEE Trans. Nucl. Sci. NS-26 (1979) 2808–2811.
- 48 P. Mansfield, P.K. Grannell: “Diffraction and microscopy in solids and liquids by NMR”, Phys. Rev. 812 (1975) 3618–3634.
- 49 S. Stapf, S. Han: NMR Imaging in Chemical Engineering, Wiley-VCH, Weinheim 2006.
- 50 D. Bonn, S. Rodts, M. Groenink, S. Rafaï, N. Shahidzadeh-Bonn, P. Coussot: “Some applications of magnetic resonance imaging in fluid mechanics: Complex flows and complex fluids”, Ann. Rev. Fluid Mech. 40 (2008) 209–233.
- 51 P.T. Callaghan: Principles of Nuclear Magnetic Resonance Microscopy, Oxford University Press, Oxford 1993.
- 52 L.F. Gladden: “Industrial applications of nuclear magnetic resonance”, Chem. Eng. J. 56 (1995) 149–158.
- 53 L.F. Gladden: “Magnetic Resonance: Ongoing and future role in chemical engineering research”, AIChE J. 49 (2003) 2–9.
- 54 A.J. Sederman, M.D. Mantle, C. Buckley, L.F. Gladden: “MRI technique for measurement of velocity vectors, acceleration, and autocorrelation functions in turbulent flow”, J. Mag. Res. 166 (2004) 182–189.
- 55 A.B. Tayler, D.J. Holland, A.J. Sedermann, L.F. Gladden: “Applications of ultra-fast MRI to high voidage bubbly flow: Measurement of bubble size distributions, interfacial area and hydrodynamics”, Chem. Eng. Sci. 71 (2012) 468–483.
- 56 N. Reinecke, G. Petritsch, D. Schmitz, D. Mewes: “Tomographic measurement techniques — Visualization of multiphase flows”, Chem. Eng. Technol. 21 (1998) 7–18.
- 57 M.H. Sankey, D.J. Holland, A.J. Sederman, L.F. Gladden: “Magnetic resonance velocity imaging of liquid and gas two-phase flow in packed beds”, J. Magn. Reson. 196 (2009) 142–148.
- 58 A.J. Sederman, L.F. Gladden: “Magnetic resonance imaging as a quantitative probe of gas–liquid distribution and wetting efficiency in trickle-bed reactors”, Chem. Eng. Sci. 56 (2001) 2615–2628.
- 59 L.D. Anadon, A.J. Sederman, L.F. Gladden, Mechanism of the trickle-to-pulse transition in fixed-bed reactors, AIChE. J. 52 (2006) 1522–1532.
- 60 M.H. Sankey: Velocity mapping in trickle-bed reactors and multiphase systems using MRI, PhD thesis, University of Cambridge, 2008.
- 61 M. Sankey, Z. Yang, L. Gladden, M.L. Johns, D. Lister, B. Newling, “SPRITE MRI of bubbly flow in a horizontal pipe,” J. Magn. Reson. 199 (2009) 126–135.
- 62 M.S. Beck, T. Dyakowski, R.A. Williams, “Process Tomography — the state of the Art” in Proc. Frontiers in Process Tomography II, 1997, pp. 357–362.
- 63 C.G. Xie, N. Reinecke, M.S. Beck, D. Mewes, R.A. Williams: “Electrical tomography techniques for process engineering application”, Chem. Eng. J. 56 (1995) 127–133.
- 64 V. Rimpilainen, S. Poutiainen, L.M. Heikkinen, T. Savolainen, M. Vauhkonen, J. Ketolainen: “Electrical capacitance tomography as a monitoring tool for high-shear mixing and granulation”, Chem. Eng. Sci. 66 (2011) 4090–4100.
- 65 X. Cong, X. Guo, X. Gong, H. Lu, W. Dong: “Experimental research of flow patterns and pressure signals in horizontal dense phase pneumatic conveying of pulverized coal”, Powder Technol. 208 (2011) 600–609
- 66 W. Yang: “Design of electrical capacitance tomography sensors”, Meas. Sci. Technol. 21 (2010) 042001.
- 67 H.G. Wang, W.Q. Yang: “Measurement of fluidised bed dryer by different frequency and different normalisation methods with electrical capacitance tomography”, Powder Technol. 199 (2010) 60–69.
- 68
P. Tahvildariana,
H. Ngb,
M. D'Amatob,
S. Drappelb,
F. Ein-Mozaffaria,
S.R. Upretia:
“Using electrical resistance tomography images to characterize the mixing of micron-sized polymeric particles in a slurry reactor”,
Chem. Eng. J.
172
(2011)
517–525.
10.1016/j.cej.2011.06.056 Google Scholar
- 69 J. Jia, M. Wang, H.I. Schlaberg, H. Li: “A novel tomographic sensing system for high electrically conductive multiphase flow measurement”, Flow Meas. Instrum. 21 (2010) 184–190.
- 70 S.A. Razzak, S. Barghi, J.-X. Zhu: “Application of electrical resistance tomography on liquid–solid two-phase flow characterization in an LSCFB riser”, Chem. Eng. Sci. 64 (2009) 2851–2858.
- 71 A. Trächtler, B. Horner, D. Schupp: “Tomographische Methoden bei der induktiven Durchflussmessung zur Bestimmung von Strömungsprofilen und –parametern”, Tech. Mess. 64 (1997) 365–373.
- 72 C. Pichot, L. Jofre, G. Peronnot, J.C. Boloney: “Active Microwave Imaging of Inhomogeneous Godies”, IEEE Trans. Antennas Propag. AP-33 (1985) 416–425.
- 73 K. Arunachalam, L. Udpa, S.S. Udpa: “A computational investigation of microwave breast imaging using deformable reflector”, IEE Trans. Biomed. Eng. 55 (2008) 554–562.
- 74 D.M. Mittleman, R.H. Jacobsen, M.C. Nuss: “T-ray imaging”, IEEE J. Sel. Top. Quantum Electron. 2 (1996) 679.
- 75 M.H. Al-Dahhan, A. Kemoun, A.R. Cartolano: “Phase distribution in an upflow monolith reactor using computed tomography”, AIChE J. 52 (2006) 745–752.
- 76 A.K. Patel, B.N. Thorat: “Gamma-ray tomography – An experimental analysis of fractional gas hold-up in bubble columns”, Chem. Eng. J. 137 (2008) 376–385.
- 77 E.M. Bruvik, B.T. Hjertaker, A. Hallanger: “Gamma-ray tomography applied to hydrocarbon multi-phase sampling and slip measurements”, Flow Meas. Instrum. 21 (2010) 240–248.
- 78 F. Fischer, U. Hampel: “Ultra fast electron beam X-ray computed tomography for two-phase flow measurement”, Nucl. Eng. Des. 240 (2010) 2254–2259.
- 79 E.L. Ritman: “Current Status of Developments and Applications of Micro-CT”, Annu. Rev. Biomed. Eng. 13 (2011) 531–552.
- 80 R.F. Mudde: “Bubbles in a Fluidized Bed: A Fast X-ray Scanner”, AIChE J. 57 (2011) 2684–2690.
- 81 D. Toye, M. Crine, P. Marchot: “Imaging of liquid distribution in reactive distillation packings with a new high-energy X-ray tomograph”, Meas. Sci. Technol. 16 (2005) 2213–2220.
- 82 M.H. Maleki, A.J. Devaney: “Phase Retrieval and Intensity-Reconstruction Algorithms for Optical Diffraction Tomography”, J. Opt. Soc. Am. A 10 (1993) 1086–1092.
- 83 P. Wright et al.: “High-speed chemical species tomography in a multi-cylinder automotive engine”, Chem. Eng. J. 158 (2010) 2–10.
- 84 D.S. Parker, M.R. Hawkesworth, C.J. Broadbent, P. Fowles, T.D. Fryer, P.A. McNeal: “Industrial Positron-Based Imaging: Principles and Applications”, Nucl. Instrum. Methods Phys. Res., Sect. A 349 (1994) 583–592.
- 85 A. Guida, A.W. Nienow, M. Barigou: “PEPT measurements of solid–liquid flow field and spatial phase distribution in concentrated monodisperse stirred suspensions”, Chem. Eng. Sci. 65 (2010) 1905–1914.
- 86 B.S. Hoyle: “Process tomography using ultrasonic sensors”, Meas. Sci. Technol. 7 (1996) 272–280.
- 87 M.A. Seiraffi: “Ultraschall-Computertomographie zur Messung von Zweiphasenströmungen”, Fortschr.-Ber. VDI 8 (1993) 327.
- 88 J. Wolf: “Ein Messverfahren zur Untersuchung von Blasensäulenreaktoren. Die Ultraschalltomographie”, Fortschr.-Ber. VDI 8 (1988) vol. 166.
- 89 A. Schwarz: Acoustic Measurement of Temperature and Velocity Fields in Furnaces in M.S. Beck et al. (eds.): Tomographic Techniques for Process Design and Operation, Computational Mechanics Publications, Southampton 1993, pp. 381–389.
- 90 A.R. Bidin: Electrodynamic sensors and neural networks for electrical charge tomography, Sheffield Hallam University, Sheffield 1993.
- 91 J. Cross: Electrostatics: Principles, Problems and Applications, A. Hilger, Bristol 1987.
- 92 Y. Censor, “Finite Series-Expansion Reconstruction Methods,” Proc. IEEE 71 (1983) 409–419.
- 93 A.K. Louis: Inverse und schlechtgestellte Probleme, B. G. Teubner Verlag, Stuttgart 1989.
- 94 R. Gordon, R. Bender, G.T. Herman, “Algebraic Reconstruction Techniques (ART) for Three-Dimensional Electron Microscopy and X-Ray Photography,” J. Theor. Biol. 29 (1970) 471–481.
- 95 P. Gilbert, “AIterative Methods for the Three-Dimensional reconstruction of an Object from Projections,” J. Theor. Biol. 36 (1972) 105–117.
- 96 A.H. Anderson, A.C. Kak, “Simultaneous Algebraic Reconstruction Technique (SART): A Superior Implementation of the ART Algorithm,” Ultrason. Imaging 6 (1984) 81–94.
- 97 M.D. Young: Iterative Solutions of Large Linear Systems, Academic Press, New York 1971.
- 98 H.P. Lutz: Fourier Image Reconstruction Incorporating Three Simple Interpolation Techniques, Tech. Rep. 104, Dept. of Comp. Sci, SUNY Buffalo, 1974.
- 99 R.N. Bracewell, A.C. Riddle, “Inversion of fan beam scans in Radio Astronomy,” Astrophys. J. 150 (1967) 427–434.
- 100 R.M. Mersereau, “Direct Fourier Transformation Techniques in 3-D Image Reconstruction,” Comput. Biol. Med. 6 (1976) 247–258.
- 101
S.W. Rowland:
Computer Implementation of Image Reconstruction Formulas, in
G.T. Herman (ed.):
Image Reconstruction from Projections: Implementation and Application,
Springer Verlag,
Berlin
1979,
pp. 9–80.
10.1007/3-540-09417-2_2 Google Scholar
- 102 L.A. Shepp, B.F. Logan, “The Fourier Reconstruction of a Head Section”, IEEE Trans. Nucl. Sci. NS-21 (1974) 21–43.
- 103 G.N. Ramachandran, A.V. Lakshminarayanan: “Three-dimensional reconstruction from radiographs and electron micrographs: application of convolution instead of Fourier transform”, Proc. Natl. Acad. Sci. USA 68 (1971) 2236–2240.
- 104 M.D. Altschulter, G.T. Herman: Fully Three–Dimensional Image Reconstruction Using Series Expansion Methods in A.B. Brill (ed): A Review of Information Processing in Medical Imaging, Oak Ridge 1977, pp. 124–142.
- 105 W. Warsito, L.-S. Fan: “Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography”, Chem. Eng. Process. 42 (2003) 663–674.
- 106 H.S. Ko, D.P. Lyons, K.D. Kihm: “A Comparative Study of Algebraic Reconstruction Technique (ART) and Generic Algorithms (GA) for Beam Deflection Tomography”, Proc. ASME Fluids Engineering Division Summer Meeting, Vancouver, June 22-26, 1997.