Solar Technology

Joachim Luther

Joachim Luther

Universität Oldenburg, Fachbereich Physik, Oldenburg, Germany

Search for more papers by this author
Michael Nast

Michael Nast

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Stuttgart, Germany

Search for more papers by this author
M. Norbert Fisch

M. Norbert Fisch

Universität Stuttgart, Institut für Thermodynamik und Wärmetechnik, Stuttgart, Germany

Search for more papers by this author
Dirk Christoffers

Dirk Christoffers

Institut für Solarenergieforschung Hameln/Emmerthal (ISFH), Emmerthal, Germany

Search for more papers by this author
Fritz Pfisterer

Fritz Pfisterer

Universität Stuttgart, Institut für Physikalische Elektronik, Stuttgart, Germany

Search for more papers by this author
Dieter Meissner

Dieter Meissner

AQR, Jülich, Germany

Search for more papers by this author
Joachim Nitsch

Joachim Nitsch

Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Stuttgart, Germany

Search for more papers by this author
Manfred Becker

Manfred Becker

Solarberatung, Lohmar, Germany

Search for more papers by this author
First published: 15 July 2012
Citations: 1

Abstract

The article contains sections titled:

1.

Introduction

1.1.

Concerning the Importance of Solar Energy Conversion

1.2.

Terrestrial Solar Radiation

1.3.

Methods of Solar Energy Conversion

1.4.

Matching of Solar Energy Production and Consumption

2.

Solar Thermal Energy

2.1.

Development and Historical Aspects

2.2.

Solar Thermal Energy Conversion

2.3.

Technical Utilization of Solar Energy

2.3.1.

Low-Temperature Applications

2.3.1.1.

Design and Function of Flat Collectors

2.3.1.2.

Systems for Heating Water

2.3.1.3.

Systems for Room Heating

2.3.1.4.

Other Low-Temperature Applications

2.3.2.

Medium-Temperature and High-Temperature Applications

2.3.2.1.

Solar Concentration

2.3.2.2.

Concepts for Solar Thermal Power Plants

2.3.2.3.

Development for Realization

2.3.2.4.

Solar Thermal Power Plants

2.3.2.5.

Future Plants and Potential

2.3.2.6.

Economic Aspects

2.3.2.7.

Process Heat for Chemical Applications

3.

Passive Utilization of Solar Energy

3.1.

Introduction

3.2.

Building Design

3.2.1.

Site Analysis

3.2.2.

Design

3.2.3.

Heat Conservation

3.3.

Elements of Passive Utilization

3.3.1.

Collection

3.3.2.

Storage and Distribution

3.3.3.

Shading and Cooling

3.3.4.

Daylight

3.4.

Performance of a Solar House

4.

Photovoltaic Systems

4.1.

Principle of Operation, PV Materials, and State-of-the-Art Solar Cells

4.2.

General Structure of PV Systems

4.3.

Photovoltaic Generators

4.3.1.

Module Technology and Specifications

4.3.2.

Tracking and Concentration

4.4.

Power Conditioning Systems

4.5.

Storage

4.6.

Stand-Alone PV Systems

4.7.

Grid-Connected PV Systems

4.8.

Design Considerations and Modeling

4.9.

Operational Experience

4.9.1.

PV Module Performance

4.9.2.

PV System Efficiency, Annual Energy Output

4.10.

Economic Aspects, Market, Energy Payback, Prospects

4.10.1.

Stand-Alone PV Systems

4.10.2.

Grid-Connected PV Systems

4.10.3.

Energy Payback Time

4.10.4.

Multifunctional Use of PV Modules

5.

Photoelectrochemical Solar Energy Conversion

5.1.

Principles of Photoelectrochemical Solar Energy Conversion

5.2.

Dye-Sensitized Photoelectrochemical Solar Cells

5.3.

Solar Wastewater Detoxification

5.4.

Direct Photoelectrochemical Water Splitting

6.

Economic Aspects

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.