Cancer Chemotherapy

Bernhard Kutscher

Bernhard Kutscher

ASTA Medica AG, Frankfurt am Main, Federal Republic of Germany

Search for more papers by this author
Gregory A. Curt

Gregory A. Curt

National Cancer Institute, Bethesda, Maryland, United States, 20205

Search for more papers by this author
Carmen J. Allegra

Carmen J. Allegra

National Cancer Institute, Bethesda, Maryland, United States, 20205

Search for more papers by this author
Robert L. Fine

Robert L. Fine

National Cancer Institute, Bethesda, Maryland, United States, 20205

Search for more papers by this author
Hamza Mujagic

Hamza Mujagic

National Cancer Institute, Bethesda, Maryland, United States, 20205

Search for more papers by this author
Grace Chao Yeh

Grace Chao Yeh

National Cancer Institute, Bethesda, Maryland, United States, 20205

Search for more papers by this author
Bruce A. Chabner

Bruce A. Chabner

National Cancer Institute, Bethesda, Maryland, United States, 20205

Search for more papers by this author
First published: 15 June 2000

Abstract

The article contains sections titled:

1.

Introduction

2.

Antimetabolites

2.1.

Methotrexate

2.1.1.

Mechanism of Action and Mechanisms of Resistance

2.1.2.

Analogs

2.2.

Fluoropyrimidines

2.2.1.

Mechanism of Action

2.2.2.

Mechanisms of Resistance

2.2.3.

Other Fluoropyrimidines

2.3.

5-Azacytidine

2.3.1.

Mechanism of Action

2.3.2.

Mechanism of Resistance

2.3.3.

New Analogs

2.4.

Cytosine Arabinoside (Ara-C)

2.4.1.

Mechanisms of Resistance

2.4.2.

New Analogs

2.5.

Deoxycytidine and Analogs

2.6.

2-Halopurines and Analogs

2.7.

6-Mercaptopurine and 6-Thioguanine

2.7.1.

Mechanism of Action

2.7.2.

Mechanism of Resistance

2.7.3.

New Analogs

3.

Alkylating Agents

3.1.

Nitrogen Mustard

3.1.1.

Mechanism of Action

3.1.2.

Mechanisms of Drug Resistance

3.2.

Melphalan

3.2.1.

Mechanism of Action

3.2.2.

Mechanism of Resistance

3.3.

Cyclophosphamide

3.3.1.

Mechanism of Action

3.3.2.

Mechanism of Resistance

3.4.

Chlorambucil

3.5.

Thio-TEPA

3.6.

Ifosfamide

3.7.

Estramustine

3.8.

Nitrosoureas

3.8.1.

Mechanism of Action

3.8.2.

Mechanisms of Resistance

3.8.3.

Analogs

3.9.

Procarbazine

3.9.1.

Mechanism of Action

3.9.2.

Mechanisms of Resistance

3.10.

Dacarbazine

3.11.

Hexamethylmelamine

3.12.

Mitomycin-C

4.

Anthracyclines

4.1.

Mechanism of Action

4.2.

Mechanism of Resistance

4.3.

Analogs

5.

Intercalating Anthracenes and Analogs

5.1.

Mitoxantrone

5.2.

Analogs

6.

Antitumor Antibiotics Other than Anthracyclines

6.1.

Actinomycin D

6.2.

Bleomycin

6.2.1.

Analogs

6.2.2.

Mechanism of Action

6.3.

DNA Interactive Natural Products

7.

Antitubulin Agents

7.1.

Vinca Alkaloids

7.1.1.

Vincristine and Vinblastine

7.1.2.

Vindesine

7.1.3.

Vinorelbine

7.2.

Podophyllotoxin and Its Derivatives

7.3.

Camptothecin and Analogs

7.4.

Taxoids

7.5.

Epothilone A and B

8.

Heavy-Metal Complexes

8.1.

cis-Platinum

8.1.1.

Mechanism of Action

8.1.2.

Mechanisms of Resistance

8.2.

Carboplatin

8.3.

Analogs

9.

Hormonally Active Anticancer Drugs/Antihormones

9.1.

Antiestrogens

9.1.1.

Antagonists

9.1.2.

Tamoxifen, Toremifene

9.1.3.

Analogs

9.2.

Aromatase Inhibitors

9.3.

Antiandrogens

9.3.1.

Flutamide

9.3.2.

Nilutamide

9.3.3.

Bicalutamide

9.4.

LHRH Analogs

9.4.1.

LHRH Agonists

9.4.1.1.

Leuprorelin Acetate

9.4.1.2.

Goserelin

9.4.2.

LHRH Antagonists

9.4.2.1.

Receptor Assays

9.4.2.2.

Peptidomimetics

10.

Signal Transduction Inhibitors

10.1.

Enzyme Inhibitors

10.2.

Phospholipid - Based Antineoplastics

11.

Economic Aspects

The full text of this article hosted at iucr.org is unavailable due to technical difficulties.