Epilepsy genes: The link between molecular dysfunction and pathophysiology
Corresponding Author
Carl E. Stafstrom
Departments of Neurology and Pediatrics, University of Wisconsin, Madison, Wisconsin
Department of Neurology, H4-614 CSC, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792Search for more papers by this authorBruce L. Tempel
Department of Otolaryngology–Head and Neck Surgery, The Bloedel Hearing Research Center, University of Washington School of Medicine, Seattle, Washington
Search for more papers by this authorCorresponding Author
Carl E. Stafstrom
Departments of Neurology and Pediatrics, University of Wisconsin, Madison, Wisconsin
Department of Neurology, H4-614 CSC, University of Wisconsin, 600 Highland Avenue, Madison, WI 53792Search for more papers by this authorBruce L. Tempel
Department of Otolaryngology–Head and Neck Surgery, The Bloedel Hearing Research Center, University of Washington School of Medicine, Seattle, Washington
Search for more papers by this authorAbstract
Our understanding of the genetic basis of epilepsy is progressing at a rapid pace. Gene mutations causing several of the inherited epilepsies have been mapped, and several more are likely to be added in coming years. In this review, we summarize the available information on the genetic basis of human epilepsies and epilepsy syndromes, emphasizing how genetic defects may correlate with the pathophysiological mechanisms of brain hyperexcitability. Mutations leading to epilepsy have been identified in genes encoding voltage- and ligand-gated ion channels (benign familial neonatal convulsions, autosomal dominant nocturnal frontal lobe epilepsy, generalized epilepsy with febrile seizures “plus”), neurotransmitter receptors (Angelman syndrome), the molecular cascade of cellular energy production (myoclonic epilepsy with ragged red fibers), and proteins without a known role in neuronal excitability (Unverricht-Lundborg disease). Gene defects can lead to epilepsy by altering multiple and diverse aspects of neuronal function. MRDD Research Reviews 2000;6:281–292. © 2000 Wiley-Liss, Inc.
REFERENCES
- Alkondon M, Pereira EFR, Eisenberg H, et al. 2000. Nicotinic receptor activation in human cerebral cortical interneurons: a mechanism for inhibition and disinhibition of neuronal networks. J Neurosci 20: 66–75.
- Andrews PI, Stafstrom CE. 1993. Ictal EEG findings in an infant with benign familial neonatal convulsions. J Epilepsy 6: 174–179.
- Angelman H. 1965. “Puppet” children: a report on three cases. Dev Med Child Neurol 7: 681–688.
- Ashcroft F. 2000. Ion channels and disease. San Diego: Academic Press.
- Baram TZ, Schultz L. 1991. Corticotropin-releasing hormone is a rapid and potent convulsant in the infant rat. Dev Brain Res 61: 97–101.
- Barnard EA, Skolnick P, Olsen RW, et al. 1998. International Union of Pharmacology XV: subtypes of gamma-amino-butyric acid A receptors: classification on the basis of subunit structure and receptor function. Pharmacol Rev 50: 291–313.
- Berkovic SF, Scheffer IE. 1997a. Epilepsies with single gene inheritance. Brain Dev 19: 13–18.
- Berkovic SF, Scheffer IE. 1997b. Genetics of human partial epilepsy. Curr Opin Neurol 10: 110–114.
- Berkovic SF, Scheffer IE. 1998. Febrile seizures: genetics and relationship to other epilepsy syndromes. Curr Opin Neurol 11: 129–134.
- Berkovic SF, Cochius J, Andermann E, et al. 1993. Progressive myoclonic epilepsies: clinical and genetic aspects. Epilepsia 34 (suppl 3): S19–S30.
- Berkovic SF, Howell RA, Hay DA, et al. 1998. Epilepsies in twins: genetics of the major epilepsy syndromes. Ann Neurol 43: 435–445.
- Bertrand D. 1999. Neuronal nicotinic acetylcholine receptors: their properties and alterations in autosomal dominant nocturnal frontal lobe epilepsy. Rev Neurol (Paris) 155: 457–462.
- Bertrand D, Changeux J-P. 1999. Nicotinic receptor: a prototype of allosteric ligand-gated ion channels and its possible implications in epilepsy. In: AV Delgado-Escueta, WA Wilson, RW Olsen, RJ Porter, editors. Jasper's basic mechanisms of the epilepsies. 3rd ed. Philadelphia: Lippincott Williams & Wilkins. p 171–188.
- Biervert C, Schroeder BC, Kubisch C, et al. 1998. A potassium channel mutation in neonatal human epilepsy. Science 279: 403–406.
- Boyd SG, Harden A, Patton MA. 1998. The EEG in early diagnosis of the Angelman (Happy Puppet) syndrome. Eur J Pediatr 147: 508–513.
- Brew HM, Forsythe ID. 1995. Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15: 8011–8022.
- Browne DL, Gancher ST, Nutt JG, et al. 1994. Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene KCNA1. Nat Genet 8: 136–140.
- Burgess DL, Noebels JL. 1999. Single gene defects in mice: the role of voltage-dependent calcium channels in absence models. Epilepsy Res 36: 111–122.
- Burgess DL, Jones J, Meisler M, et al. 1997. Mutation of the Ca2+ channel subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 88: 385–392.
- Burgess DL, Davis CF, Gefrides LA, Noebels JL. 1999. Identification of three novel Ca2+ channel γ subunit genes reveals molecular diversification by tandem and chromosome duplication. Genome Res 9: 1204–1213.
- Cattanach BM, Barr JA, Beechey CV, et al. 1997. A candidate model for Angelman syndrome in the mouse. Mamm Genome 8: 472–478.
- Catterall WA. 1995. Structure and function of voltage-gated ion channels. Annu Rev Biochem 64: 493–531.
- Charlier C, Singh NA, Ryan SG, et al. 1998. A pore mutation in a novel KQT-like potassium channel gene in an idiopathic epilepsy family. Nat Genet 18: 53–55.
- Chen K, Baram TZ, Soltesz I. 1999. Febrile seizures in the developing brain result in persistent modification of neuronal excitability in limbic circuits. Nat Med 5: 888–894.
- Chen Q, Zhang D, Gingell RL, et al. 1999. Homozygous deletion in KVLQT1 associated with Jervell and Lange-Nielsen syndrome. Circulation 99: 1344–1347.
- Cock H, Schapira AH. 1999. Mitochondrial DNA mutations and mitochondrial dysfunction in epilepsy. Epilepsia 40 (suppl 3): 33–40.
- Coetzee WA, Amarillo Y, Chiu J, et al. 1999. Molecular diversity of K+ channels. Ann NY Acad Sci 868: 233–285.
- Commission on Classification and Terminology of the International League Against Epilepsy. 1989. Proposal for revised classification of epilepsies and epilepsy syndromes. Epilepsia 30: 389–399. Stafstrom, 1999
- DeLorey TM, Handforth A, Anagnostaras SG, et al. 1998. Mice lacking the β3 subunit of the GABA-A receptor have the epilepsy phenotype and many of the behavioral characteristics of Angelman syndrome. J Neurosci 18: 8505–8514.
- DeLorey TM, Olsen RW. 1999. GABA and epileptogenesis: comparing gabrb3 gene-deficient mice with Angelman syndrome in man. Epilepsy Res 36: 123–132.
- Dichter MA, Buchhalter JR. 1997. The genetic epilepsies. In: R Rosenberg, S Prusiner, S DiMauro, R Barchi, editors. The molecular and genetic basis of neurological disease. 2nd ed. Boston: Butterworth-Heinemann. p 757–783.
- Figl A, Viseshakul N, Shafaee N, et al. 1998. Two mutations linked to nocturnal frontal lobe epilepsy cause use-dependent potentiation of the nicotinic ACh response. J Physiol 513(3): 655–670.
- Fletcher CF, Lutz CM, O'Sullivan TN, et al. 1996. Absence epilepsy in tottering mutant mice is associated with calcium channel defects. Cell 87: 607–617.
- Gardiner R. 1999. Genetic basis of the human epilepsies. Epilepsy Res 36: 91–95.
- Hauser W, Annegers J, Kurland L. 1993. The incidence of epilepsy and unprovoked seizures in Rochester, Minnesota, 1935-1984. Epilepsia 34: 453–468.
- Hille B. 1992. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer Associates.
- Hirose S, Iwata H, Akiyoshi H, et al. 1999. A novel mutation of CHRNA4 responsible for autosomal dominant nocturnal frontal lobe epilepsy. Neurology 53: 1749–1753.
- Hirsch E, Velez A, Sellal F, et al. 1993. Electroclinical signs of benign familial neonatal convulsions. Ann Neurol 34: 835–841.
- Ho CM, Grange RW, Joho RH. 1997. Pleiotropic effects of a disrupted K+ channel gene: reduced body weight, impaired motor skill and muscle contraction, but no seizures. Proc Natl Acad Sci U S A 94: 1533–1538.
- Homanics GE, DeLorey TM, Firestone LL, et al. 1997. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Proc Natl Acad Sci U S A 94: 4143–4148.
- Jen J. 1999. Calcium channelopathies in the central nervous system. Curr Opin Neurobiol 9: 274–280.
- Jiang Y, Armstrong D, Albrecht U, et al. 1998. Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation. Neuron 21: 799–811.
- Johnson EW, Dubovsky J, Rich SS, et al. 1998. Evidence for a novel gene for familial febrile convulsions, FEB2, linked to chromosome 19p in an extended family from the Midwest. Hum Mol Genet 7: 63–67.
- Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nat Genet 1997; 15: 70–73.
- Krasowski MD, Rick CE, Harrison NL, et al. 1998. A deficit of functional GABAA receptors in neurons of β3 subunit knockout mice. Neurosci Lett 240: 81–84.
-
Kugler SL,
Stenroos ES,
Mandelbaum DE, et al.
1998.
Hereditary febrile seizures: phenotype and evidence for a chromosome 19p locus.
Am J Med Genet
79:
354–361.
10.1002/(SICI)1096-8628(19981012)79:5<354::AID-AJMG5>3.0.CO;2-J CAS PubMed Web of Science® Google Scholar
- Kuryatov A, Gerzanich V, Nelson M, Olale F, Lindstrom J. 1997. Mutation causing autosomal dominant nocturnal frontal lobe epilepsy alters Ca2+ permeability, conductance, and gating of human α4β2 nicotinic acetylcholine receptors. J Neurosci 17: 9035–9047.
- Laan LAEM, Reiner WO, Arts WFM, et al. 1997. Evolution of epilepsy and EEG findings in Angelman syndrome. Epilepsia 38: 195–199.
- Laan LAEM, van den Ouweland AMW, Bakker PLG, et al. 1999. Angelman syndrome: AS phenotype correlated with specific EEG pattern may result in a high detection rate of mutations in the UBE3A gene. J Med Genet 36: 723–724.
- Lalioti MD, Scott HS, Buresi C, et al. 1997. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature 386: 847–851.
- Lees GJ. 1991. Inhibition of sodium-potassium-ATPase: a potentially ubiquitous mechanism contributing to central nervous system neuropathology. Brain Res Rev 16: 283–300.
- Lena C, Changeux J-P. 1997. Role of calcium ions in nicotinic facilitation of GABA release in mouse thalamus. J Neurosci 17: 576–585.
- Lerche H, Biervert C, Alekov AK, et al. 1999. A reduced K+ current due to a novel mutation in KCNQ2 causes neonatal convulsions. Ann Neurol 46: 305–312.
- Letts VA, Felix R, Biddlecome GH, et al. 1998. The mouse stargazer gene encodes a neuronal Ca2+-channel gamma subunit. Nat Genet 19: 340–347.
- Luo Y, Bond JD, Ingram VM. 1997. Compromised mitochondrial function leads to increased cytosolic calcium and to activation of MAP kinases. Proc Natl Acad Sci U S A 94: 9705–9710.
- Magloczky Z, Halasz P, Vajda J, et al. 1997. Loss of calbinin-D28K immunoreactivity from dentate granule cells in human temporal lobe epilepsy. Neuroscience 76: 377–385.
- Maher J, McLachlan RS. 1997. Febrile convulsions in selected large families: a single-major-locus mode of inheritance? Dev Med Child Neurol 39: 79–84.
- Malzac P, Webber H, Moncla A, et al. 1998. Mutation analysis of UBE3A in Angelman syndrome patients. Am J Hum Genet 62: 1353–1360.
- Marrion NV. 1997. Control of M-current. Annu Rev Physiol 59: 483–504.
- Matsuura T, Sutcliffe JS, Fang P. 1997. De novo truncating mutations in E6-AP ubiquitin-proetin ligase gene (UBE3A) in Angelman syndrome. Nat Genet 15: 74–77.
- McNamara JO. 1994. Cellular and molecular basis of epilepsy. J Neurosci 14: 3413–3425.
- McNamara JO. 1998. Genetics of epilepsy. In: JB Martin, editor. Molecular neurobiology. New York: Scientific American Inc. p 75–93.
- McNamara JO, Puranam RS. 1996. Protease inhibitor implicated. Nature 381: 26–27.
- McCormick KA, Ison LL, Ragsdale D, et al. 1998. Molecular determinants of Na+ channel function in the extracellular domain of the β1 subunit. J Biol Chem 273: 3954–3962.
- Minassian BA, DeLorey TM, Olsen RW, et al. 1998. Angelman syndrome: correlations between epilepsy phenotypes and genotypes. Ann Neurol 43: 485–493.
- Moulard B, Guipponi M, Chaigne D, et al. 1999. Identification of a new locus for generalized epilepsy with febrile seizures plus (GEFS+) on chromosome 2q24-q33. Am J Hum Genet 65: 1396–1400.
- Nakayama J, Hamano K, Iwasaki N, et al. 2000. Significant evidence for linkage of febrile seizures to chromosome 5q14-q15. Hum Mol Genet 9: 87–91.
- Nicholls RD. 1998. Strange bedfellows? protein degradation and neurological dysfunction. Neuron 21: 647–649.
- Nicholls RD, Saitoh S, Horsthemke B. 1998. Imprinting in Prader-Willi and Angelman syndromes. Trends Genet 14: 194–200.
- Noebels JL. 1996. Targeting epilepsy genes. Neuron 16: 241–244.
- Noebels JL. 1999. Single-gene models of epilepsy. In: AV Delgado-Escueta, WA Wilson, RW Olsen, RJ Porter, editors. Jasper's basic mechanisms of the epilepsies. 3rd ed. Philadelphia: Lippincott Williams & Wilkins. p 227–238.
- Norio R, Koskiniemi M. 1979. Progressive myoclonus epilepsy: genetic and nosological aspects with special reference to 107 Finnish patients. Clin Genet 15: 382–398.
- Oldani A, Zucconi M, Asselta R, et al. 1998. Autosomal dominant nocturnal frontal lobe epilepsy: a video-polysomnographic and genetic appraisal of 40 patients and delineation of the epileptic syndrome. Brain 121: 205–223.
- Ophoff RA, Terwindt GM, Vergouwe MN, et al. 1996. Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87: 543–552.
-
Ozawa M,
Nishino I,
Horai S, et al.
1997.
Myoclonus epilepsy with ragged red fibers: a G-to-A mutation at nucleotide pair 8363 in mitochondrial tRNA(Lys) in two families.
Muscle Nerve
20:
271–278.
10.1002/(SICI)1097-4598(199703)20:3<271::AID-MUS2>3.0.CO;2-8 CAS PubMed Web of Science® Google Scholar
- Pedersen PL. 1999. Mitochondrial events in the life and death of animal cells. J Bioenerg Biomem 31: 291–304.
- Peiffer A, Thompson J, Charlier C, et al. 1999. A locus for febrile seizures (FEB3) maps to chromosome 2q23-24. Ann Neurol 46: 671–678.
- Pennacchio LA, Lehesjoki AE, Stone AE, et al. 1996. Mutations in the gene encoding cystatin B in progressive myoclonus epilepsy (EPM1). Science 271: 1731–1734.
- Pennacchio LA, Bouley DM, Higgins KM, et al. 1998. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B–deficient mice. Nat Genet 20: 251–258.
- Phillips HA, Scheffer IE, Berkovic SF, et al. 1995. Localization of a gene for autosomal dominant nocturnal frontal lobe epilepsy to chromosome 20q13.2. Nat Genet 10: 117–118.
- Phillips HA, Scheffer IE, Crossland KM, et al. 1998. Autosomal dominant nocturnal frontal lobe epilepsy: genetic heteogeneity and evidence for a second locus at 15q24. Am J Hum Genet 63: 1108–1116.
- Picard F, Bertrand S, Steinlein O, et al. 1999. Mutated nicotinic receptors responsible for autosomal dominant nocturnal frontal lobe epilepsy are more sensitive to carbamazepine. Epilepsia 9: 1198–1209.
- Plouin P. 1998. Benign familial neonatal convulsions and benign idiopathic convulsions. In: J Engel, TA Pedley, editors. Epilepsy: a comprehensive textbook. Philadelphia: Lippincott-Raven. p 2247–2255.
- Plummer NW, Meisler MH. 1999. Evolution and diversity of mammalian sodium channel genes. Genomics 57: 323–331.
- Prasad AN, Prasad C, Stafstrom CE. 1999. Recent advances in the genetics of epilepsy: insights from human and animal studies. Epilepsia 40: 1329–1352.
- Rakic P, Sidman RL. 1973. Organization of cerebellar cortex secondary to deficit of granule cells in weaver mutant mice. J Comp Neurol 152: 133–161.
- Reis A, Dittrich B, Greger V, et al. 1994. Imprinting mutations suggested by abnormal DNA methylation patterns in familial Angelman and Prader-Willi syndromes. Am J Hum Genet 54: 741–747.
- Rich SS, Annegers JF, Hauser WA, et al. 1987. Complex segregation analysis of febrile convulsions. Am J Hum Genet 41: 249–257.
- Ronen GM, Rosales TO, Connolly M, et al. 1993. Seizure characteristics in chromosome 20 benign familial neonatal convulsions. Neurology 43: 1355–1360.
- Ryan SG. 1999. Ion channels and the genetic contribution to epilepsy. J Child Neurol 14: 58–66.
- Scheffer IE, Berkovic SF. 1997. Generalized epilepsy with febrile seizures plus: a genetic disorder with heterogeneous clinical phenotypes. Brain 120: 479–490.
- Scheffer IE, Bhatia KP, Lopes-Cendes I, et al. 1995. Autosomal dominant nocturnal frontal lobe epilepsy: a distinctive clinical disorder. Brain 118: 61–73.
- Schinder AF, Olson EC, Spitzer NC, et al. 1996. Mitochondrial dysfunction is a primary event in glutamate neurotoxicity. J Neurosci 16: 6125–6133.
- Schoffner JM, Lott MT, Lezza AM, et al. 1990. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA tRNA(Lys) mutation. Cell 61: 931–937.
- Schroeder BC, Kubisch C, Stein V, et al. 1998. Moderate loss of function of cyclic-AMP-modulated KCNQ2/KCNQ3 K+ channels causes epilepsy. Nature 396: 687–690.
- Schwartzkroin PA. 1997. Origins of the epileptic state. Epilepsia 38: 853–858.
- Segal M. 1991. Acetylcholine and epilepsy. In: RS Fisher, JT Coyle, editors. Neurotransmitters and epilepsy. New York: Wiley-Liss. p 95–101.
- Serratosa JM, Gardiner RM, Lehejoski A-E, et al. 1999. The molecular genetic bases of the progressive myoclonic epilepsies. In: AV Delgado-Escueta, WA Wilson, RW Olsen, RJ Porter, editors. Jasper's basic mechanisms of the epilepsies. Philadelphia: Lippincott Williams & Wilkins. p 383–398.
- Silvestri G, Moraes CT, Shanske S, et al. 1992. A new mtDNA mutation in the tRNA(Lys) gene associated with myoclonic epilepsy and ragged-red fibers (MERRF). Am J Hum Genet 51: 1213–1217.
- Singh NA, Charlier C, Stauffer D, et al. 1998. A novel potassium channel gene, KCNQ2, is mutated in an inherited epilepsy of newborns. Nat Genet 18: 25–29.
- Singh R, Scheffer I, Crossland K, et al. 1999. Generalized epilepsy with febrile seizures plus: a common childhood-onset genetic epilepsy syndrome. Ann Neurol 45: 75–81.
- Smart SL, Lopantsev V, Zhang CL, et al. 1998. Deletion of the Kv1.1 potassium channel causes epilepsy in mice. Neuron 20: 809–819.
- Stafstrom CE. 1999. Mechanisms of epilepsy in mental retardation: insights from Angelman syndrome, Down syndrome and fragile X syndrome. In: M Sillanpaa, L Gram, S Johannessen, T Tomson, editors. Epilepsy and mental retardation. Petersfield, Hampshire, UK: Wrightson Biomedical Publishing, Ltd. p 8–40.
- Stafstrom CE, Schwindt PC, Chubb MC, et al. 1985. Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex in vitro. J Neurophysiol 53: 153–170.
- Steinlein OK. 1999. The genetic basis of epilepsy: mutant alleles of ligand- and voltage-gated ion channels. Neuroscientist 5: 295–301.
- Steinlein OK, Mulley JC, Propping P, et al. 1995. A missense mutation in the neuronal nicotinic receptor alpha4 subunit is associated with autosomal dominant nocturnal frontal lobe epilepsy. Nat Genet 11: 201–203.
- Steinlein O, Magnusson A, Stoodt J, et al. 1997. An insertion mutation of the CHRNA4 gene in a family with autosomal dominant nocturnal frontal lobe epilepsy. Hum Mol Genet 6: 943–947.
- Steinlein OK, Stoodt J, Biervert C, et al. 1999. The voltage-gated potassium channel KCNQ2 and idiopathic generalized epilepsy. Neuroreport 10: 1163–1166.
- Stout AK, Raphael HM, Kanterewicz BI, et al. 1998. Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1: 366–373.
- Sugimoto T, Yasuhara A, Ohta T, et al. 1992. Angelman syndrome in three siblings: characteristic epileptic seizures and EEG abnormalities. Epilepsia 33: 1078–1082.
- Viani F, Romeo A, Viri M, et al. 1995. Seizure and EEG patterns in Angelman's syndrome. J Child Neurol 10: 467–471.
- Vizi ES, Lendavi B. 1999. Modulatory role of presynaptic nicotinic receptors in synaptic and non-synaptic chemical communication in the central nervous system. Brain Res Rev 30: 219–235.
- Wallace DC, Lott MT, Schoffner JM, et al. 1994. Mitochondrial DNA mutations in epilepsy and neurological disease. Epilepsia 35(suppl 1): S43–S50.
- Wallace RH, Berkovic SF, Howell RA, et al. 1996. Suggestion of a major gene for familial febrile convulsions mapping to 8q13-21. J Med Genet 33: 308–312.
- Wallace RH, Wang DW, Singh R, et al. 1998. Febrile seizures and generalized epilepsy associated with a mutation in the Na+-channel β1 subunit gene SCN1B. Nat Genet 19: 366–370.
- Wang Q, Curran ME, Splawski I, et al. 1996. Positional cloning of a novel potassium channel gene: KVLQT1 mutations cause cardiac arrhythmias. Nat Genet 12: 17–23.
- Wang HS, Pan Z, Shi W, et al. 1998. KCNQ2 and KCNQ3 potassium channel subunits: molecular correlates of the M-channel. Science 282: 1890–1893.
- Weiland S, Witzemann V, Villarroel A, et al. 1996. An amino acid exchange in the second transmembrane segment of a neuronal nicotinic receptor causes partial epilepsy by altering its desensitization kinetics. FEBS Lett 398: 91–96.
- Wonnacott S. 1997. Presynaptic nicotinic ACh receptors. Trends Neurosci 20: 92–98.
- Yang W-P, Levesque PC, Little WA, et al. 1998. Functional expression of two KvLQT1-related potassium channels responsible for an inherited idiopathic epilepsy. J Biol Chem 273: 19419–19423.
- Zhuchenko O, Bailey J, Bonnen P, et al. 1997. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the α-1A-voltage-dependent calcium channel. Nat Genet 15: 62–69.
- Zuberi S, Eunson L, Spauschus A, Silva RD, Tolmie J, Wood N, et al. 1999. A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 122: 817–825.