Aggregation-Induced Emission Polymers
Xiaoyong Zhang
Department of Chemistry, Nanchang University, Nanchang, People's Republic of China
Search for more papers by this authorQing Wan
Department of Chemistry, Nanchang University, Nanchang, People's Republic of China
Search for more papers by this authorMeiying Liu
Department of Chemistry, Nanchang University, Nanchang, People's Republic of China
Search for more papers by this authorYen Wei
Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorXiaoyong Zhang
Department of Chemistry, Nanchang University, Nanchang, People's Republic of China
Search for more papers by this authorQing Wan
Department of Chemistry, Nanchang University, Nanchang, People's Republic of China
Search for more papers by this authorMeiying Liu
Department of Chemistry, Nanchang University, Nanchang, People's Republic of China
Search for more papers by this authorYen Wei
Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorAbstract
Aggregation-induced emission (AIE) is an unusual fluorescent phenomenon characterized by strong luminescence observed in the aggregated state or in high-concentration solutions. AIE-active polymers have been extensively explored for various applications. Owing to their unique AIE property, these polymers overcome the aggregation caused quenching effect observed in conventional organic dyes. This makes the AIE-active polymers especially attractive for biomedical applications due to the aggregation of AIEgens in aqueous solution. AIE-active polymers have shown great potential for chemical/biological sensors, biological imaging, multimodel imaging, drug delivery, nanotheranostics, and organic light emission diodes owing to their outstanding properties such as ultrabrightness, versatile design, and multifunctional potential. This article presents recent advances in the fabrication strategies and biomedical applications of AIE-active polymers.
Bibliography
- 1K. K.-W. Lo, D. C.-M. Ng, and C.-K. Chung, Organometallics 20, 4999–5001 (2001).
- 2B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943–945 (2001).
- 3X. Zhang, S. Wang, L. Xu, L. Feng, Y. Ji, L. Tao, S. Li, and Y. Wei, Nanoscale 4, 5581-5584 (2012).
- 4X. Zhang, X. Zhang, S. Wang, M. Liu, L. Tao, Y. Wei, Nanoscale 5, 147–150 (2013).
- 5X. Michalet, F. Pinaud, L. Bentolila, J. Tsay, S. Doose, J. Li, G. Sundaresan, A. Wu, S. Gambhir, and S. Weiss, Science 307, 538–544 (2005).
- 6D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, Science 300, 1434–1436 (2003).
- 7J. K. Jaiswal, H. Mattoussi, M. Mauro J., and S. M. Simon, Nat. Biotechnol. 21, 47–51 (2003).
- 8S. Nie, Nanomedicine 5, 523–528 (2010).
- 9S. M. Moghimi, A. C. Hunter, and J. C. Murray, Faseb. J. 19, 311–330 (2005).
- 10E. Boisselier and D. Astruc, Chem. Soc. Rev. 38, 1759–1782 (2009).
- 11Y. S. Nam, J. J. Yoon, and T. G. Park, J. Biomed. Mater. Res. 53, 1–7 (2000).
- 12W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. 60, 613–621 (2002).
- 13X. Zhang, X. Zhang, S. Wang, M. Liu, Y. Zhang, L. Tao, and Y. Wei, Acs. Appl. Mater. Inter. 5, 1943–1947 (2013).
- 14J. Yao, M. Yang, Y. Duan, Chem. Rev. 114, 6130–6178 (2014).
- 15W. Qin, D. Ding, J. Liu, W. Z. Yuan, Y. Hu, B. Liu, and B. Z. Tang, Adv. Funct. Mater. 22, 771–779 (2012).
- 16F. Mahtab, Y. Yu, J. W. Lam, J. Liu, B. Zhang, P. Lu, X. Zhang, and B. Z.Tang , Adv. Funct. Mater. 21, 1733–1740 (2011).
- 17Q. Wan, M. Liu, L. Mao, R. Jiang, D. Xu, H. Huang, Y. Dai, F. Deng, X. Zhang, and Y. Wei, Mat. Sci. Eng. C. 72, 352–358 (2016).
- 18Z. Long, M. Liu, R. Jiang, G. Zeng, Q. Wan, H. Huang, F. Deng, Y. Wan, X. Zhang, and Y. Wei, Ultrason. Sonochem. 35, 319–325 (2016).
- 19Z. Long, M. Liu, R. Jiang, Q. Wan, L. Mao, Y. Wan, F. Deng, X. Zhang, and Y. Wei, Chem. Eng. J. 308, 527–534 (2017).
- 20W. Y. William, E. Chang, R. Drezek, and V. L. Colvin, Biochem. Bioph. Res. Co. 348, 781–786 (2006).
- 21X. Gao, L. Yang, A. Petros J., F. Marshall F., W. Simons J., and S. Nie, Curr. Opin. Biotech. 16, 63–72 (2005).
- 22H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, and S. T. Lee, Angew. Chem. Int. Edit. 49, 4430–4434 (2010).
- 23H. Liu, T. Ye, and C. Mao, Angew. Chem. Int. Edit. 46, 6473–6475 (2007).
- 24F. Wang and X. Liu, J. Am. Chem. Soc. 130, 5642–5643 (2008).
- 25Z. Xu, X. Kang, C. Li, Z. Hou, C. Zhang, D. Yang, G. Li, and J. Lin, Inorg. Chem. 49, 6706–6715 (2010).
- 26M. S. Muthu, D. T. Leong, L. Mei, S.-S. Feng, Theranostics 4, 660–677 (2014).
- 27A. Sánchez-Castillo, C. Noguez, I. L. Garzón, J. Am. Chem. Soc. 132, 1504–1505 (2010).
- 28F. Pinaud, X. Michalet, L. A. Bentolila, J. M. Tsay, S. Doose, J. J. Li, G. Iyer, and S. Weiss, Biomaterials 27, 1679–1687 (2006).
- 29A. Nel, T. Xia, L. Mädler, and N. Li, Science 311, 622–627 (2006).
- 30H.-B. Fu, and J.-N. Yao, J. Am. Chem. Soc. 123, 1434–1439 (2001).
- 31X. Zhang, K. Wang, M. Liu, X. Zhang, L. Tao, Y. Chen, and Y. Wei, Nanoscale 7, 11486–11508 (2015).
- 32Q. Zhao, K. Li, S. Chen, A. Qin, D. Ding, S. Zhang, Y. Liu, B. Liu, J. Z. Sun, and B. Z. Tang, J. Mater. Chem. 22, 15128–15135 (2012).
- 33X. He, J. Duan, K. Wang, W. Tan, X. Lin, and C. He, J. Nanosci. Nanotechno. 4, 585–589 (2004).
- 34A. Patra, J. M. Koenen, and U. Scherf, Chem. Commun. 47, 9612–9614 (2011).
- 35S. Kim, T. Y. Ohulchanskyy, H. E. Pudavar, R. K. Pandey, and P. N. Prasad, J. Am. Chem. Soc. 129, 2669–2675 (2007).
- 36A. Köhler, J. S. Wilson, and R. H. Friend, Adv. Eng. Mater. 4, 1438–1656 (2002).
- 37M. Liu, D. Xu, K. Wang, F. Deng, Q. Wan, G. Zeng, Q. Huang, X. Zhang, and Y. Wei, RSC Adv. 5, 96983–96989 (2015).
- 38B. Zhao, X.-Y. Chen, P. Cheng, D.-Z. Liao, S.-P. Yan, and Z.-H. Jiang, J. Am. Chem. Soc. 126, 15394–15395 (2004).
- 39C. Heng, M. Liu, K. Wang, F. Deng, H. Huang, Q. Wan, J. Hui, X. Zhang, and Y. Wei, Ceram. Int. 41, 15075–15082 (2015).
- 40Q. Huang, M. Liu, J. Chen, K. Wang, D. Xu, F. Deng, H. Huang, X. Zhang, and Y. Wei, J. Mater. Sci. 51, 8116–8130 (2016).
- 41Q. Huang, M. Liu, J. Chen, K. Wang, D. Xu, F. Deng, H. Huang, X. Zhang, and Y. Wei, Appl. Surf. Sci. 387, 285–293 (2016).
- 42M. Torimura, S. Kurata, K. Yamada, T. Yokomaku, Y. Kamagata, T. Kanagawa, and R. Kurane, Anal. Sci. 17, 155–160 (2001).
- 43C. Y. Wu, M. S. Chen, C. A. Lin, S. C. Lin, and S. S. Sun, Chem. Eur. J. 12, 2263–2269 (2006).
- 44X. Zhang, X. Zhang, B. Yang, Y. Zhang, and Y. Wei, ACS Appl. Mater. Interf. 6, 3600–3606 (2014).
- 45Y. Hong, W. Lam J., and Z. Tang B., Chem. Soc. Rev. 40, 5361–5388 (2011).
- 46Y. Dong, J. W. Lam, A. Qin, J. Liu, Z. Li, B. Z. Tang, J. Sun, and H. S. Kwok, Appl. Phys. Lett. 91, 011111 (2007).
- 47J. Luo, Z. Xie, W. Lam J., L. Cheng, H. Chen, C. Qiu, H. S. Kwok, X. Zhan, Y. Liu, and D. Zhu, Chem. Commun. 1740–1741 (2001).
- 48Z. Zhao, J. W. Lam, and B. Z. Tang, J. Mater. Chem. 22, 23726–23740 (2012).
- 49L. Zhan, G. Yanxia, Z. Xiaoyong, Q. Wei, F. Qiaohui, L. Yan, J. Zongxian, W. Jianjun, T. Yuqin, and D. Xiaojiang, J. Nanopart. Res. 13, 2939–2947 (2011).
- 50D. Zhang, S. J. Xiao, L. L. Zheng, Y. F. Lia, and C. Z. Huang, 3, 1854–1860 (2014).
- 51K. Wang, X. Zhang, X. Zhang, B. Yang, Z. Li, Q. Zhang, Z. Huang, and Y. Wei, J. Mater. Chem. C. 3, 1854–1860 (2015).
- 52T. Han, X. Gu, J. W. Lam, A. C. Leung, R. T. Kwok, T. Han, B. Tong, J. Shi, Y. Dong, and B. Z. Tang, J. Mater. Chem. C. 4, 10430–10434 (2016).
- 53Y. Akiyama, A. Kikuchi, M. Yamato, and T. Okano, Langmuir 20, 5506–5511 (2004).
- 54Y. Dong, J. W. Lam, A. Qin, Z. Li, J. Liu, J. Sun, Y. Dong, and B. Z. Tang, Chem. Phys. Lett. 446, 124–127 (2007).
- 55M. Liu, H. Huang, K. Wang, D. Xu, Q. Wan, J. Tian, Q. Huang, F. Deng, X. Zhang, and Y. Wei, Carbohyd. Poly. 142, 38–44 (2016).
- 56Q. Wan, G. Zeng, Z. He, L. Mao, M. Liu, H. Huang, F. Deng, X. Zhang, and Y. Wei, J. Mater. Chem. B 4, 5692–5699 (2016).
- 57Z. Long, M. Liu, Q. Wan, L. Mao, H. Huang, G. Zeng, Y. Wan, F. Deng, X. Zhang, and Y. Wei, Macromol. Rapid. Commun. 37, 1657–1661 (2016).
- 58Y. Hong, J. W. Lam, and B. Z. Tang, Chem. Commun. 45, 4332–4353 (2009).
- 59W. Z. Yuan, Y. Tan, Y. Gong, P. Lu, J. W. Lam, X. Y. Shen, C. Feng, H. H. Y. Sung, Y. Lu, and I. D. Williams, Adv. Mater. 25, 2837–2843 (2013).
- 60R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu, J. W. Lam, H. H. Sung, I. D. Williams, Y. Zhong, K. S. Wong, and E. Pena-Cabrera, J. Phys. Chem. C. 113, 15845–15853 (2009).
- 61Q. Wan, M. Liu, D. Xu, L. Mao, J. Tian, H. Huang, P. Gao, F. Deng, X. Zhang, and Y. Wei, Carbohyd. Poly. 152, 189–195 (2016).
- 62S. Lim, B. Z. Tang, and Y. Hong. AIE Luminogens for Visualizing Cell Structures and Functions. Aggregation-Induced Emission: Materials and Applications Volume 2: ACS Publications; 2016. p. 199–216.
- 63Z. Cao, X. Liang, H. Chen, M. Gao, Z. Zhao, X. Chen, C. Xu, G. Qu, D. Qi, and B. Z. Tang, Poly. Chem. 7, 5571–5578 (2016).
- 64Y. Wang, H. Zhang, N. Alifu, and J. Qian, AIE Nanoprobes for Multi-Photon in Vivo Bioimaging. Aggregation-Induced Emission: Materials and Applications Volume 2: ACS Publications; 2016. p. 245–270.
- 65M. Liu, G. Zeng, K. Wang, Q. Wan, L. Tao, X. Zhang, and Y. Wei, Nanoscale 8, 16819–16840 (2016).
- 66L. Yan, Y. Zhang, B. Xu, and W. Tian, Nanoscale 8, 2471–2487 (2016).
- 67S. Chen, H. Wang, Y. Hong, and B. Z. Tang, Mater. Horiz. 3, 283–293 (2016).
- 68A. N. Ramya, M. M. Joseph, J. B. Nair, V. Karunakaran, N. Narayanan, and K. K. Maiti, Acs. Appl. Mater. Inter. 8, 10220–10225 (2016).
- 69H. Ma, C. Qi, C. Cheng, Z. Yang, H. Cao, Z. Yang, J. Tong, X. Yao, and Z. Lei, Acs. Appl. Mater. Inter. 8, 8341–8348 (2016).
- 70Z. Long, M. Liu, K. Wang, F. Deng, D. Xu, L. Liu, Y. Wan, X. Zhang, and Y. Wei, Mater. Sci. Eng. C-Mater. 66, 215–220 (2016).
- 71M. Liu, H. Huang, K. Wang, D. Xu, Q. Wan, J. Tian, Q. Huang, F. Deng, X. Zhang, and Y. Wei, Carbohyd. Polym. 142, 38–44 (2016).
- 72Q. Wan, M. Liu, D. Xu, L. Mao, J. Tian, H. Huang, P. Gao, F. Deng, X. Zhang, and Y. Wei, Carbohyd. Polym. 152, 189–195 (2016).
- 73C. Heng, M. Liu, P. Wang, K. Wang, X. Zheng, D. Fan, J. Hui, X. Zhang, and Y. Wei, Chem. Eng. J. 296, 268–276 (2016).
- 74D. Ding, K. Li, B. Liu, and Z. Tang B., Accounts Chem. Res. 46, 2441–2453 (2013).
- 75G. Feng, C. Y. Tay, Q. X. Chui, R. Liu, N. Tomczak, J. Liu, B. Z. Tang, D. T. Leong, and B. Liu, Biomaterials 35, 8669–8677 (2014).
- 76K. Li, W. Qin, D. Ding, N. Tomczak, J. Geng, R. Liu, J. Liu, X. Zhang, H. Liu, and B. Liu, Sci. Rep. 3, 1150 (2013).
- 77K. Li, Z. Zhu, P. Cai, R. Liu, N. Tomczak, D. Ding, J. Liu, W. Qin, Z. Zhao, and Y. Hu, Chem. Mater. 25, 4181–4187 (2013).
- 78M. Liu, X. Zhang, B. Yang, F. Deng, Z. Li, J. Wei, X. Zhang, and Y. Wei, Appl. Sur. Sci. 322, 155–161 (2014).
- 79D. Wang, J. Qian, W. Qin, A. Qin, B. Z. Tang, and S. He, Sci. Rep. 4, 4279 (2014).
- 80Z. Wang, L. Yan, L. Zhang, Y. Chen, H. Li, J. Zhang, Y. Zhang, X. Li, B. Xu, and X. Fu, Polym. Chem. 5, 7013–7020 (2014).
- 81Y. Wu, S. Huang, F. Zeng, J. Wang, C. Yu, J. Huang, H. Xie, and S. Wu, Chem. Commun. 51, 12791–12794 (2015).
- 82Z. Zhu, X. Zhao, W. Qin, G. Chen, J. Qian, and Z. Xu, Sci. China Chem. 56, 1247–1252 (2013).
- 83H. Wang, E. Zhao, J. W. Lam, and B. Z. Tang, Mater. Today 18, 365–377 (2015).
- 84J. Mei, N. L. Leung, R. T. Kwok, J. W. Lam, and B. Z. Tang, Chem. Rev. 115, 11718–11940 (2015).
- 85W. C. Wu, C. Y. Chen, Y. Tian, S. H. Jang, Y. Hong, Y. Liu, R. Hu, B. Z. Tang, Y. T. Lee, and C. T. Chen, Adv. Funct. Mater. 20, 1413–1423 (2010).
- 86X. Zhang, X. Zhang, B. Yang, S. Wang, M. Liu, Y. Zhang, L. Tao, and Y. Wei, RSC Adv. 3, 9633–9636 (2013).
- 87C. Boyer, V. Bulmus, J. Liu, T. P. Davis, M. H. Stenzel, and C. Barner-Kowollik, J. Am. Chem. Soc. 129, 7145–7154 (2007).
- 88H. Gao, and K. Matyjaszewski, Macromolecules 39, 4960–4965 (2006).
- 89K. Min, H. Gao, and K. Matyjaszewski, Macromolecules 40, 1789–1791 (2007).
- 90S. Pasche, S. M. De Paul, J. Vörös, N. D. Spencer, and M. Textor, Langmuir 19, 9216–9225 (2003).
- 91C. Perruchot, M. Khan, A. Kamitsi, Sv. Armes, T. Von Werne, and T. Patten, Langmuir 17, 4479–4481 (2001).
- 92J. A. van Hensbergen, R. P. Burford, and A. B. Lowe, J. Polym. Sci. Pol. Chem. 51, 487–492 (2013).
- 93Y. Qiao, M. S. Islam, X. Yin, K. Han, Y. Yan, J. Zhang, Q. Wang, H. J. Ploehn, and C. Tang, Polymer 72, 428–435 (2015).
- 94J. Yu, X. Zhang, X. Hao, X. Zhang, M. Zhou, C.-S. Lee, and X. Chen, Biomaterials 35, 3356-3364 (2014).
- 95R. Gupta, A. Kumar, Biomed. Mater. 3, 034005 (2008).
- 96L. Guo, Q. Liu, G. Li, J. Shi, J. Liu, T. Wang, and G. Jiang, Nanoscale 4, 5864–5867 (2012).
- 97H. Xu, F. Yan, E. E. Monson, and R. Kopelman, J. Biomed. Mater. Res. A 66, 870–879 (2003).
- 98X. Zhang, X. Zhang, S. Wang, M. Liu, Y. Zhang, L. Tao, and Y. Wei, ACS Appl. Mater. Inter. 5, 1943–1947 (2013).
- 99Q. Wan, C. He, K. Wang, M. Liu, H. Huang, Q. Huang, F. Deng, X. Zhang, and Y. Wei, Tetrahedron 71, 8791–8797 (2015).
- 100D. Appelhans, B. Klajnert-Maculewicz, A. Janaszewska, J. Lazniewska, and B. Voit, Chem. Soc. Rev. 44, 3968–3996 (2015).
- 101B. Kang, T. Opatz, K. Landfester, and F. R. Wurm, Chem. Soc. Rev. 44, 8301–8325 (2015).
- 102S. Y. Park, H. U. Lee, E. S. Park, S. C. Lee, J. W. Lee, S. W. Jeong, C. H. Kim, Y. C. Lee, Y. S. Huh, and J. Lee, ACS Appl. Mater. Inter. 6, 3365–3370 (2014).
- 103H. Zhang, and M. Chiao, J. Med. Biol. Eng. 35, 143–155 (2015).
- 104Q. Wan, M. Liu, D. Xu, H. Huang, L. Mao, G. Zeng, F. Deng, X. Zhang, and Y. Wei, J. Mater. Chem. B 4, 4033–4039 (2016).
- 105V. Guillerm, D. Kim, J. F. Eubank, R. Luebke, X. Liu, K. Adil, M. S. Lah, and M. Eddaoudi, Chem. Soc. Rev. 43, 6141–6172 (2014).
- 106X. Hui, D. Xu, K. Wang, W. Yu, H. Yuan, M. Liu, S. Zhengyu, X. Zhang, and Y. Wei, RSC Adv. 5, 107355–107359 (2015).
- 107F. Nouar, J. F. Eubank, T. Bousquet, L. Wojtas, M. J. Zaworotko, and M. Eddaoudi, J. Am. Chem. Soc. 130, 1833–1835 (2008).
- 108D. Beljonne, J. Cornil, R. Silbey, P. Millie, J.L. Brédas, J. Chem. Phy. 112, 4749–4758 (2000).
- 109G. Yu, G. Tang, and F. Huang, J. Mater. Chem. C 2, 6609–6617 (2014).
- 110Q. Wan, K. Wang, H. Du, H. Huang, M. Liu, F. Deng, Y. Dai, X. Zhang, and Y. Wei, Polym. Chem. 6, 5288–5294 (2015).
- 111Z. Wang, S. Chen, J. W. Lam, W. Qin, R. T. Kwok, N. Xie, Q. Hu, and B. Z. Tang, J. Am. Chem. Soc. 135, 8238–8245 (2013).
- 112X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chen, and Y. Wei, Polym. Chem. 4, 4317–4321 (2013).
- 113X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chen, and Y. Wei, Polym. Chem. 5, 356–360 (2014).
- 114X. Zhang, X. Zhang, B. Yang, M. Liu, W. Liu, Y. Chen, and Y. Wei, Polym. Chem. 5, 399–404 (2014).
- 115X. Zhang, X. Zhang, B. Yang, J. Hui, M. Liu, Z. Chi, S. Liu, J. Xu, and Y. Wei, Polym. Chem. 5, 318–322 (2014).
- 116Q. Wan, G. Zeng, Z. He, L. Mao, M. Liu, H. Huang, F. Deng, X. Zhang, and Y. Wei, J. Mater. Chem. B 4, 5692–5699 (2016).
- 117Q. Wan, M. Liu, J. Tian, F. Deng, G. Zeng, Z. Li, K. Wang, Q. Zhang, X. Zhang, and Y. Wei, Polym. Chem. 6, 1786–1792 (2015).
- 118Q. Wan, L. Mao, M. Liu, K. Wang, G. Zeng, D. Xu, H. Huang, X. Zhang, and Y. Wei, Polym. Chem. 6, 7211–7218 (2015).
- 119Q. Wan, K. Wang, C. He, M. Liu, G. Zeng, H. Huang, F. Deng, X. Zhang, and Y. Wei, Polym. Chem. 6, 8214–8221 (2015).
- 120K. Wang, X. Zhang, X. Zhang, X. Fan, Z. Huang, Y. Chen, and Y. Wei, Polym. Chem. 6, 5891–5898 (2015).
- 121K. Wang, X. Zhang, X. Zhang, B. Yang, Z. Li, Q. Zhang, Z. Huang, and Y. Wei, Polym. Chem. 6, 1360–1366 (2015).
- 122X. Zhang, J. Hui, B. Yang, Y. Yang, D. Fan, M. Liu, L. Tao, and Y. Wei, Polym. Chem. 4, 4120–4125 (2013).
- 123X. Zhang, M. Liu, B. Yang, X. Zhang, Z. Chi, S. Liu, J. Xu, and Y. Wei, Polym. Chem. 4, 5060–5064 (2013).
- 124X. Zhang, X. Zhang, B. Yang, J. Hui, M. Liu, W. Liu, Y. Chen, and Y. Wei, Polym. Chem. 5, 689–693 (2014).
- 125J.-S. Wang and K. Matyjaszewski, J. Am. Chem. Soc. 117, 5614-5615 (1995).
- 126P. Y. Gu, C. J. Lu, Z. J. Hu, N. J. Li, Tt. Zhao, Q. F. Xu, Q. H. Xu, J. D. Zhang, and J. M. Lu, J. Mater. Chem. C 1, 2599–2606 (2013).
- 127Y. Zhao, Y. Wu, G. Yan, and K. Zhang, RSC Adv. 4, 51194–51200 (2014).
- 128R. Hu, W. Li, and B. Z. Tang, Macromol. Chem. Phys. 217, 213–224 (2016).
- 129Y. Liu, M. Gao, J. W. Lam, R. Hu, and B. Z. Tang, Macromolecules 47, 4908–4919 (2014).
- 130H. Deng, R. Hu, E. Zhao, Y. Chan C., J. W. Lam, and B. Z. Tang, Macromolecules 47, 4920–4929 (2014).
- 131Z. Huang, X. Zhang, X. Zhang, C. Fu, K. Wang, J. Yuan, L. Tao, and Y. Wei, Polym. Chem. 6, 607–612 (2015).
- 132Z. Long, M. Liu, Q. Wan, L. Mao, H. Huang, G. Zeng, Y. Wan, F. Deng, X. Zhang, and Y. Wei, Macromol. Rapid Comm. 37, 1754–1759 (2016).
- 133J. M. Baskin, J. A. Prescher, S. T. Laughlin, N. J. Agard, P. VChang, I. A. Miller, A. Lo, J. A. Codelli, and C. R. Bertozzi, P. Natl. Acad. Sci. 104, 16793–16797 (2007).
- 134B. Helms, J. L. Mynar, C. J. Hawker, and J. M. Fréchet, J. Am. Chem. Soc. 126, 15020–15021 (2004).
- 135C. E. Hoyle and C. N. Bowman, Angew. Chem. Inter. Edit. 49, 1540–1573 (2010).
- 136H. C. Kolb, M. Finn, and K. B. Sharpless, Angew. Chem. Inter. Edit. 40, 2004–2021 (2001).
- 137W. G. Lewis, L. G. Green, F. Grynszpan, Z. Radić, P. R. Carlier, P. Taylor, M. Finn, and K. B. Sharpless, Angew. Chem. Inter. Edit. 114, 1095–1099 (2002).
10.1002/1521-3757(20020315)114:6<1095::AID-ANGE1095>3.0.CO;2-3 Google Scholar
- 138J. E. Moses, and A. D. Moorhouse, Chem. Soc. Rev. 36, 1249–1262 (2007).
- 139P. Wu, A. K. Feldman, A. K. Nugent, C. J. Hawker, A. Scheel, B. Voit, J. Pyun, J. M. Fréchet, K. B. Sharpless, and V. V. Fokin, Angew. Chem. Inter. Edit. 116, 4018–4022 (2004).
10.1002/ange.200454078 Google Scholar
- 140A. Qin, J. W. Lam, and B. Z. Tang, Chem. Soc. Rev. 39, 2522–2544 (2010).
- 141A. Qin, J. W. Lam, and B. Z. Tang, Prog. Polym. Sci. 37, 182–209 (2012).
- 142H. Li, H. Wu, E. Zhao, J. Li, Z. Sun J., A. Qin, and Z. Tang B., Macromolecules 46, 3907–3914 (2013).
- 143Y. Cui, H. Xu, Y. Yue, Z. Guo, J. Yu, Z. Chen, J. Gao, Y. Yang, G. Qian, and B. Chen, J. Am. Chem. Soc. 134, 3979–3982 (2012).
- 144L. M. Maestro, E.Mn. Rodríguez, F. S. Rodríguez, M.Id. la Cruz, A. Juarranz, R. Naccache, F. Vetrone, D. Jaque, J. A. Capobianco, and J.Ga. Solé, Nano Lett. 10, 5109–5115 (2010).
- 145S. Uchiyama, Y. Matsumura, A. P. de Silva, and K. Iwai, Anal. Chem. 75, 5926–5935 (2003).
- 146J. M. Yang, H. Yang, and L. Lin, ACS Nano 5, 5067–5071 (2011).
- 147K. Okabe, N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama, Nat. Commun. 3, 705 (2012).
- 148T. Li, S. He, J. Qu, H. Wu, S. Wu, Z. Zhao, A. Qin, R. Hu, and B. Z. Tang, J. Mater. Chem. C 4, 2964–2970 (2016).
- 149J. R. Casey, S. Grinstein, and J. Orlowski, Nat. Rev. Mol. Cell Bio. 11, 50–61 (2010).
- 150A. Roos, and W. F. Boron, Physiol. Rev. 61, 296–434 (1981).
- 151J. Srivastava, D. L. Barber, and M. P. Jacobson, Physiology 22, 30–39 (2007).
- 152C. E. Talley, L. Jusinski, C. W. Hollars, S. M. Lane, and T. Huser, Anal. Chem. 76, 7064–7068 (2004).
- 153I. L. Medintz, M. H. Stewart, S. A. Trammell, K. Susumu, J. B. Delehanty, B. C. Mei, J. S. Melinger, J. B. Blanco Canosa, P. E. Dawson, and H. Mattoussi, Nat. Mater. 9, 676–684 (2010).
- 154S. Chen, Y. Hong, Y. Liu, J. Liu, C. W. Leung, M. Li, R. T. Kwok, E. Zhao, J. W. Lam, and Y. Yu, J. Am. Chem. Soc. 135, 4926–4929 (2013).
- 155Y. Liu, C. Deng, L. Tang, A. Qin, R. Hu, J. Z. Sun, and B. Z. Tang, J. Am. Chem. Soc. 133, 660–663 (2010).
- 156X. Wang, J. Hu, G. Zhang, and S. Liu, J. Am. Chem. Soc. 136, 9890–9893 (2014).
- 157J. W. Calvert, S. Jha, S. Gundewar, J. W. Elrod, A. Ramachandran, C. B. Pattillo, C. G. Kevil, and D. J. Lefer, Circ. Res. 105, 365–374 (2009).
- 158G. Yang, L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, and S. Zhang, Science 322, 587–590 (2008).
- 159G. Yang, L. Wu, and R. Wang, FASEB J. 20, 553–555 (2006).
- 160L. Li, M. Bhatia, Y. Z. Zhu, Y. C. Zhu, R. D. Ramnath, Z. J. Wang, F. B. M. Anuar, M. Whiteman, M. Salto-Tellez, and P. K. Moore, FASEB J. 19, 1196–1198 (2005).
- 161K. Eto, T. Asada, K. Arima, T. Makifuchi, and H. Kimura, Biochem. Biophys. Res. Commun. 293, 1485–1488 (2002).
- 162P. Kamoun, M. C. Belardinelli, A. Chabli, K. Lallouchi, and B. Chadefaux Vekemans, Am. J. Med. Genet. 116, 310–311 (2003).
- 163W. Yang, G. Yang, X. Jia, L. Wu, and R. Wang, J. Physiol. 569, 519–531 (2005).
- 164P. Zhang, X. Nie, M. Gao, F. Zeng, A. Qin, S. Wu, and B. Z. Tang, Mater. Chem. Front. 1, 838–845 (2017).
- 165A. Qin, J. W. Lam, L. Tang, C. K. Jim, H. Zhao, J. Sun, and B. Z. Tang, Macromolecules 42, 1421–1424 (2009).
- 166S. Liu, H. Sun, Y. Ma, S. Ye, X. Liu, X. Zhou, X. Mou, L. Wang, Q. Zhao, and W. Huang, J. Mater. Chem. 22, 22167–22173 (2012).
- 167K. Li, Y. Jiang, D. Ding, X. Zhang, Y. Liu, J. Hua, S. S. Feng, and B. Liu, Chem. Commun. 47, 7323–7325 (2011).
- 168J. Xiang, X. Cai, X. Lou, G. Feng, X. Min, W. Luo, B. He, C. C. Goh, L. G. Ng, and J. Zhou, ACS Appl. Mater. Int. 7, 14965–14974 (2015).
- 169Z. Zhu, J. Qian, X. Zhao, W. Qin, R. Hu, H. Zhang, D. Li, Z. Xu, B. Z. Tang, and S. He, ACS Nano 10, 588–597 (2015).
- 170H. Shi, R. T. Kwok, J. Liu, B. Xing, B. Z. Tang, and B. Liu, J. Am. Chem. Soc. 134, 17972–17981 (2012).
- 171C. I. O. Neoplasm, J. Natl. Cancer I. 95, 105–122 (2003).
- 172J. H. Schiller, D. Harrington, C. P. Belani, C. Langer, A. Sandler, J. Krook, J. Zhu, and D. H. Johnson, New Engl. J. Med. 346, 92–98 (2002).
- 173K. Yang, L. Feng, X. Shi, and Z. Liu, Chem. Soc. Rev. 42, 530–547 (2013).
- 174J. F. Gohy, and Y. Zhao, Chem. Soc. Rev. 42, 7117–7129 (2013).
- 175Y. Yuan, G. Feng, W. Qin, B. Z. Tang, and B. Liu, Chem. Commun. 50, 8757–8760 (2014).
- 176F. M. Kievit, and M. Zhang, Adv. Mater. 23, 217–247 (2011).
- 177T. Lammers, F. Kiessling, W. E. Hennink, and G. Storm, Mol. Pharmaceut. 7, 1899–1912 (2010).
- 178S. Mura, and P. Couvreur, Adv. Drug Deliver. Rev. 64, 1394–1416 (2012).
- 179X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, J. Am. Chem. Soc. 128, 2115–2120 (2006).
- 180X. Huang, P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Laser. Med. Sci. 23, 217–228 (2008).
- 181Y. Yong, X. Cheng, T. Bao, M. Zu, L. Yan, W. Yin, C. Ge, D. Wang, Z. Gu, and Y. Zhao, ACS Nano 9, 12451–12463 (2015).
- 182X. Zhang, M. Liu, X. Zhang, F. Deng, C. Zhou, J. Hui, W. Liu, and Y. Wei, Toxicol. Res. 4, 160–168 (2015).
- 183Z. Sun, H. Xie, S. Tang, X. F. Yu, Z. Guo, J. Shao, H. Zhang, H. Huang, H. Wang, and P. K. Chu, Angew. Chem. 127, 11688–11692 (2015).
10.1002/ange.201506154 Google Scholar
- 184K. Yang, J. Wan, S. Zhang, B. Tian, Y. Zhang, and Z. Liu, Biomaterials 33, 2206–2214 (2012).
- 185K. Wang, X. Fan, L. Zhao, X. Zhang, X. Zhang, Z. Li, Q. Yuan, Q. Zhang, Z. Huang, and W. Xie, Small 12, 6568–6575 (2016).
- 186J. Huang, Y. Jiang, J. Yang, R. Tang, N. Xie, Q. Li, H. S. Kwok, Z. Tang B., and Z. Li, J. Mater. Chem. C 2, 2028–2036 (2014).
- 187J. Huang, R. Tang, T. Zhang, Q. Li, G. Yu, S. Xie, Y. Liu, S. Ye, J. Qin, and Z. Li, Chem-Eur J. 20, 5317–5326 (2014).
- 188Z. Ning, Z. Chen, Q. Zhang, Y. Yan, S. Qian, Y. Cao, and H. Tian, Adv. Funct. Mater. 17, 3799–3807 (2007).
- 189W. Qin, J. W. Lam, Z. Yang, S. Chen, G. Liang, W. Zhao, S. Kwok H., and B. Z. Tang, Chem. Commun. 51, 7321–7324 (2015).
- 190E. Ravindran, S. J. Ananthakrishnan, E. Varathan, V. Subramanian, and N. Somanathan, J. Mater. Chem. C 3, 4359–4371 (2015).