Polycaprolactone: Synthesis, Properties, and Applications
Vincenzo Guarino
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Search for more papers by this authorGennaro Gentile
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Search for more papers by this authorLuigi Sorrentino
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Search for more papers by this authorLuigi Ambrosio
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Department of Chemicals Science and Materials Technology, National Research Council, Rome, Italy
Search for more papers by this authorVincenzo Guarino
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Search for more papers by this authorGennaro Gentile
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Search for more papers by this authorLuigi Sorrentino
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Search for more papers by this authorLuigi Ambrosio
Institute for Polymers, Composites and Biomaterials, National Research Council, Naples, Italy
Department of Chemicals Science and Materials Technology, National Research Council, Rome, Italy
Search for more papers by this authorAbstract
Polycaprolactone (PCL) is one of the earliest, commercially available, synthetic polymers characterized by a large set of biodegradation and mechanical properties that can be finely controlled by regulating the local environmental driving forces (ie, microorganisms, enzymes, hydrolysis). Owing to their faster resorbability and long-term degradation in the presence of water (up to 3 to 4 years), PCL has been widely investigated as a bioinspired material able to target selective cell response via controlled intracellular resorption pathways. In comparison with other aliphatic polyesters, the superior rheological and viscoelastic properties render PCL easy to manufacture and manipulate into a wide range of three-dimensional platforms (ie, porous scaffold, micro- and nanocarriers, and implantable devices). In this article, we discuss the main relationships between polymer synthesis, physical/chemical properties, and processing conditions to optimize the fabrication of biodegradable devices made of PCL, putting particular focus on drug delivery, tissue engineering. and green chemistry applications.
Bibliography
- 1L. S. Nair and C. T. Laurencin, Prog. Polym. Sci. 32, 762–798 (2007), https://doi.org/10.1016/j.progpolymsci.2007.05.017.
- 2J. L. Lowery, N. Datta, and G. C. Rutledge, Biomaterials. 31, 491–504 (2010), https://doi.org/10.1016/j.biomaterials.2009.09.072.
- 3J. M. Estelle, A. Vidaurre, J. M. M. Duenas, and I. C. Cortazar, J. Mater. Sci., Mater. Med. 19, 189–195 (2008), https://doi.org/10.1007/s10856-006-0101-2.
- 4Y. Ikada and H. Tsuji, Macromol. Rapid Commun. 21, 117–132 (2000), https://doi.org/10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X.
10.1002/(SICI)1521-3927(20000201)21:3<117::AID-MARC117>3.0.CO;2-X CAS Web of Science® Google Scholar
- 5S. Alix, A. Mahieu, C. Terrie, J. Soulestin, E. Gerault, M. G. J. Feuilloley, R. Gattin, V. Edon, T. Ait-Younes, and N. Leblanc, Eur. Polym. J. 49, 1234–1242 (2013), https://doi.org/10.1016/j.eurpolymj.2013.03.016.
- 6G. Gaucher, P. Satturwar, M. C. Jones, A. Furtos, and J. C. Leroux, Eur. J. Pharm. Biopharm. 76, 147–158 (2010), https://doi.org/10.1016/j.ejpb.2010.06.007.
- 7G. Gaucher, M. H. Dufresne, V. P. Sant, N. Kang, D. Maysinger, and J. C. Leroux, J. Controlled Release 109, 169–188 (2005), https://doi.org/10.1016/j.jconrel.2005.09.034.
- 8K. Gorna and S. Gogolewski, Polym. Degrad. Stab. 75, 113–122 (2002), https://doi.org/10.1016/S0141-3910(01)00210-5
- 9F. J. Van Natta, J. W. Hill, and W. H. Carothers, J. Am. Chem. Soc. 56, 455–459 (1934), https://doi.org/10.1021/ja01317a053.
10.1021/ja01317a053 Google Scholar
- 10M. A. Woodruff and D. W. Hutmacher, Prog. Polym. Sci. 35, 1217–1256 (2010), https://doi.org/10.1016/j.progpolymsci.2010.04.002.
- 11S. Agarwal, Polym. Chem. 1, 953–964 (2010), https://doi.org/10.1039/c0py00040j.
- 12S. Kwon, K. Lee, W. Bae, and H. Kim, Polym. J. 40, 332–338 (2008), https://doi.org/10.1295/polymj.PJ2007095.
- 13M. Labet and W. Thielemans, Chem. Soc. Rev. 38, 3484–3504 (2009), https://doi.org/10.1039/b820162p.
- 14H. Dong, H. Wang, S. Cao, and J. Shen, Biotechnol. Lett. 20, 905–908 (1998), https://doi.org/10.1023/A:1005441707356.
- 15A. Mahapatro, A. Kumar, and R. A. Gross, Biomacromolecules 5, 62–68 (2004), https://doi.org/10.1021/bm0342382.
- 16H. Ö. Düşkünkorur, E. Pollet, V. Phalip, Y. Güvenilir, and L. Avérous, Polymer 55, 1648–1655 (2014), https://doi.org/10.1016/j.polymer.2014.02.016.
- 17W. J. Bailey, Z. Ni, and S. R. Wu, Macromolecules 15, 711–714 (1982), https://doi.org/10.1021/ma00231a006.
- 18S. Agarwal, R. Kumar, T. Kissel, and R. Reul, Polym. J. 41, 650–660 (2009), https://doi.org/10.1295/polymj.PJ2009091 2.
- 19W. J. Bailey, T. Endo, B. Gapud, Y.-N. Lin, Z. Ni, C.-Y. Pan, S. E. Shaffer, S.-R. Wu, N. Yamazaki, and K. Yonezawa, J. Macromol. Sci., Part A: Pure Appl. Chem. 21, 979–995 (1984), https://doi.org/10.1080/00222338408056586.
- 20G. E. Roberts, M. L. Coote , J. P. A. Heuts , L. M. Morris, and T. P. Davis, Macromolecules 32, 1332–1340 (1999), https://doi.org/10.1021/ma9813587.
- 21L. F. Sun, R. X. Zhuo, and Z. L. Liu, J. Polym. Sci., Part A: Polym. Chem. 41, 2898–2904 (2003), https://doi.org/10.1002/pola.10868.
- 22J. Undin, A. Finne-Wistrand, and A.-C. Albertsson, Biomacromolecules 14, 2095–2102 (2013), https://doi.org/10.1021/bm4004783.
- 23J. Undin, A. Finne-Wistrand, and A.-C. Albertsson, Biomacromolecules 15, 2800–2807 (2014), https://doi.org/10.1021/bm500689g.
- 24S. Maji, F. Mitschang, L. Chen, Q. Jin, Y. Wang, and S. Agarwal, Macromol. Chem. Phys. 213, 1643–1654 (2012), https://doi.org/10.1002/macp.201200220.
- 25D. Ding, X. Pan, Z. Zhang, N. Li, J. Zhu, and X. Zhu, Polym. Chem. 7, 5258–5264 (2016), https://doi.org/10.1039/C6PY01061J.
- 26V. Delplace, S. Harrisson, A. Tardy, D. Gigmes, Y. Guillaneuf, and J. Nicolas, Macromol. Rapid Commun. 35, 484–491 (2014), https://doi.org/10.1002/marc.201300809.
- 27G. Gomez d'Ayala, M. Malinconico, P. Laurienzo, A. Tardy, Y. Guillaneuf, M. Lansalot, F. D'Agosto, and B. Charleux, J. Polym. Sci., Part A: Polym. Chem. 52, 104–111 (2014), https://doi.org/10.1002/pola.26976.
- 28G. G. Hedir, C. A. Bell, N. S. Leong†, E. Chapman, I. R. Collins, R. K. O'Reilly, and A. P. Dove, Macromolecules 47, 2847–2852 (2014), https://doi.org/10.1021/ma500428e.
- 29C. A. Bell, G. G. Hedir, R. K. O'Reilly, and A. P. Dove, Polym. Chem. 6, 7447–7454 (2015), https://doi.org/10.1039/C5PY01156F.
- 30G. G. Hedir, C. A. Bell, R. K. O'Reilly, and A. P. Dove, Biomacromolecules 16, 2049–2058 (2015), https://doi.org/10.1021/acs.biomac.5b00476.
- 31S. Jin, and K. E. Gonsalves, Macromolecules 30, 3104–3106 (1997), https://doi.org/10.1021/ma961590h.
- 32S. Agarwal, and C. Speyerer, Polymer 51, 1024–1032 (2010), https://doi.org/10.1016/j.polymer.2010.01.020.
- 33F. Cavani, K. Raabova, F. Bigi, and C. Quarantelli, Chem. Eur. J. 16, 12962–12969 (2010), https://doi.org/10.1002/chem.201001777.
- 34U.S. Patent 6531615 B2 (2003), Solvay Societe Anonyme, M. C. Rocca, G. Carr, A. B. Lambert, D. J. MacQuarrie, and J. H. Clark.
- 35Y. Minglong, X. Chengdong, and D. Xianmo, J. Appl. Polym. Sci. 67, 1273–1276 (1998), 10.1002/(SICI)1097-4628(19980214)67:7<1273::AID-APP17>3.0.CO;2-2.
10.1002/(SICI)1097-4628(19980214)67:7<1273::AID-APP17>3.0.CO;2-2 Google Scholar
- 36K. M. Stridsberg, M. Ryner, and A.-C. Albertsson, Adv. Polym. Sci. 157, 41–65 (2002), https://doi.org/10.1007/3-540-45734-8_2.
- 37A.-C. Albertsson and R. Palmgren, J. Macromol. Sci., Part A: Pure Appl. Chem. 33, 747–758 (1996), https://doi.org/10.1080/10601329608010891.
- 38A. L. Sisson, D. Ekinci, and A. Lendlein, Polymer 54, 4333–4350 (2013), https://doi.org/10.1016/j.polymer.2013.04.045.
- 39A. Kowalski, A. Duda, and S. Penczek, Macromol. Rapid Commun. 19, 567–572 (1998), https://doi.org/10.1002/(SICI)1521-3927(19981101)19:11<567::AID-MARC567>3.0.CO;2-T.
10.1002/(SICI)1521-3927(19981101)19:11<567::AID-MARC567>3.0.CO;2-T CAS Web of Science® Google Scholar
- 40A. Duda, Macromolecules 29, 1399–1406 (1996), https://doi.org/10.1021/ma951442b.
- 41M. Okada, Prog. Polym. Sci. 27, 87–133 (2002), https://doi.org/10.1016/S0079-6700(01)00039-9.
- 42H. Nishida and Y. Tokiwa, J. Environ. Polym. Degrad. 1, 227–233 (1993), https://doi.org/10.1007/BF01458031.
- 43C. V. Benedict, W. J. Cook, P. Jarrett, J. A. Cameron, S. J. Huang, and J. P. Bell, J. Appl. Polym. Sci. 28, 327–334 (1983), https://doi.org/10.1002/app.1983.070280128.
- 44M. J. Motiwalla, P. P. Punyarthi, M. K. Mehta, J. S. D'Souza, and V. Kelkar-Mane, J. Environ. Biol. 34, 43–49 (2013).
- 45M. Rutkowska, K. Krasowska, A. Heimowska, I. Steinka, H. Janik, J. Haponiuk, and S. Karlsson, Pol. J. Environ. Stud. 11, 413–420 (2002).
- 46C. X. F. Lam, D. W. Hutmacher, J.-T. Schantz, M. A. Woodruff, and S. H. Teoh, J. Biomed. Mater. Res. Part A. 90, 906–919 (2008), https://doi.org/10.1002/jbm.a.32052.
- 47C. G. Pitt, F. I. Chasalow, Y. M. Hibionada, D. M. Klimas, and A. Schindler, J. Appl. Polym. Sci. 26, 3779–3787 (1981), https://doi.org/10.1002/app.1981.070261124
- 48H. Sun, L. Mei, C. Song, X. Cui, and P. Wang, Biomaterials 27, 1735–1740 (2006), https://doi.org/10.1016/j.biomaterials.2005.09.019.
- 49Y. Tokiwa and T. Suzuki, Nature, 270, 76–78 (1977), https://doi.org/10.1038/270076a0.
- 50K. Leja and G. Lewandowicz, Pol. J. Environ. Stud. 19, 255–266 (2010)
- 51W. J. Cook, J. A. Cameron, J. P. Bell, and S. J. Huang, J. Polym. Sci., Part B: Polym. Lett. Ed. 19, 159–165 (1981), https://doi.org/10.1002/pol.1981.130190402.
- 52K. E. Uhrich, S. M. Cannizzaro, and R. S. Langer, Chem. Rev. 99, 3181–3198 (1999), https://doi.org/10.1021/cr940351u.
- 53T. K. Dash and V. B. Konkimalla, Mol. Pharm. 9, 2365–2379 (2012), https://doi.org/10.1021/mp3001952.
- 54D. Cohn, T. Stern, M. F. González, and J. Epstein, J. Biomed. Mater. Res. 59, 273–281 (2002), https://doi.org/10.1002/jbm.1242.
- 55D. Cohn and A. Hotovely Salomon, Biomaterials 26, 2297–2305 (2005), https://doi.org/10.1016/j.biomaterials.2004.07.052.
- 56J. Fernández, A. Etxeberria, and J.-R. Sarasua, Eur. Polym. J. 71, 585–595 (2015), https://doi.org/10.1016/j.eurpolymj.2015.09.001.
- 57S. Ali Akbari Ghavimi, M. H. Ebrahimzadeh, M. Solati-Hashjin, and N. A. Abu Osman, J. Biomed. Mater. Res., Part A 103, 2482–2498 (2015), https://doi.org/10.1002/jbm.a.35371.
- 58H. Pranamuda, Y. Tokiwa, and H. Tanaka, J. Environ. Polym. Degrd. 4, 1–7 (1996), https://doi.org/10.1007/BF02083877.
- 59S. C. Mendes, J. Bezemer, M. B. Claase, D. W. Grijpma, G. Bellia, F. Degli-Innocenti, R. L. Reis, K. de Groot, C. A. van Blitterswijk, and J. D. de Bruijn. Tissue Eng. 9, 91–101 (2004), https://doi.org/10.1089/10763270360697003.
10.1089/10763270360697003 Google Scholar
- 60C. Bastioli, A. Cerutti, I. Guanella, G. C. Romano, and M. Tosin, J. Environ. Polym. Degrad. 3, 81–95 (1995), https://doi.org/10.1007/BF02067484.
- 61M.-U. Haque, M. E. Errico, G. Gentile, M. Avella, and M. Pracella, Macromol. Mater. Eng. 297, 985–993 (2012), https://doi.org/10.1002/mame.201100414.
- 62M. Cocca, R. Avolio, G. Gentile, E. Di Pace, M. E. Errico, and M. Avella, Carbohyd. Polym. 118, 170–182 (2015), https://doi.org/10.1016/j.carbpol.2014.11.024.
- 63R. Avolio, I. Bonadies, D. Capitani, M. E. Errico, G. Gentile, and M. Avella, Carbohyd. Polym. 87, 265–273 (2012), https://doi.org/10.1016/j.carbpol.2011.07.047.
- 64M. Hakkarainen and A.-C. Albertsson, Macromol. Chem. Phys. 203, 1357–1363 (2002), https://doi.org/10.1002/1521-3935(200207)203:10/11<1357::AID-MACP1357>3.0.CO;2-R.
- 65C. Erisken, D. M. Kalyon, and H. Wang, Nanotechnology 19, 165302 (2008), https://doi.org/10.1088/0957-4484/19/16/165302.
- 66S. Labidi, N. Azema, D. Perrin, and J.-M. Lopez-Cuesta, Polym. Degrad. Stab. 95, 382–388 (2010), https://doi.org/j.polymdegradstab.2009.11.013.
- 67M. Wollerdorfer and H. Bader, Ind. Crops Prod. 8, 105–112 (1998), https://doi.org/10.1016/S0926-6690(97)10015-2.
- 68K. Ohtsubo, K. Suzuki, Y. Yasui, and T. Kasumi, J. Food Comp. Anal. 18, 303–316 (2005), https://doi.org/10.1016/j.jfca.2004.10.003.
- 69J. G. Lyons, P. Blackie, and C. L. Higginbotham, Int. J. Pharm. 351, 201–208 (2008), https://doi.org/10.1016/j.ijpharm.2007.09.041.
- 70L. A. Utracki and Z. H. Shi, Polym. Eng. Sci. 32, 1824–1833 (1992), https://doi.org/10.1002/pen.760322405.
- 71 S.-T. Lee, ed., Foam Extrusion, Principles and Practice, CRC Press, Boca Raton, Fla., 2000;
- 72N. Yogaraj, J. M. Raquez, P. Dubois, and R. Narayan, Biomacromolecules 6, 807–817 (2005), https://doi.org/10.1021/bm0494242.
- 73L. Cabedo, J. L. Feijoo, M. P. Villanueva, J. M. Lagaron, and E. Gimenez, Macromol. Symp. 233, 191–197 (2006), https://doi.org/10.1002/masy.200690017.
- 74M. E. Broz, D. L. VanderHart, and N. R. Washburn, Biomaterials 24, 4181–4190 (2003), https://doi.org/10.1016/S0142-9612(03)00314-4.
- 75W. M. Stevels, A. Bernard, P. Van De Witte, P. J. Dijkstra, and J. Feijen, J. Appl. Polym. Sci. 62, 1295–1301 (1996), https://doi.org/10.1002/(SICI)1097-4628(19961121)62:8<1295::AID-APP20>3.0.CO;2-5.
- 76M. Harada, K. Lida, K. Okamoto, H. Hayashi, and K. Hirano, Polym. Eng. Sci. 48, 1359–1368 (2008), https://doi.org/10.1002/pen.21088.
- 77L. Wang, W. Ma, R. A. Gross, and S. P. McCarthy, Polym. Degrad. Stab. 59, 161–168 (1998), https://doi.org/10.1016/S0141-3910(97)00196-1.
- 78M. F. Koenig and S. J. Huang, Polymer 36, 1877–1882 (1995), https://doi.org/10.1016/0032-3861(95)90934-T.
- 79S. Kalambur and S. S. H. Rizvi, Polym. Eng. Sci. 46, 650–658 (2006), https://doi.org/10.1002/pen.20508.
- 80L. Averous, C. Fringant, and L. Moro, Starch 53, 368–371 (2001).
- 81P. Matzinos, V. Tserki, A. Kontoyiannis, and C. Panayiotou, Polym. Degrad. Stab. 11, 17–24 (2002), https://doi.org/10.1016/S0141-3910(02)00072-1.
- 82L. Averous, L. Moro, P. Dole, and C. Fringant, Polymer 41, 4157–4167 (2000), https://doi.org/10.1016/S0032-3861(99)00636-9.
- 83B.-Y. Shin, S.-I. Lee, Y.-S. Shin, S. Balakrishnan, and R. Narayan, Polym. Eng. Sci. 44, 1429–1438 (2004), https://doi.org/10.1002/pen.20139.
- 84Z. Qiu, T. Ikehara, and T. Nishi, Polymer 44, 3101–3106 (2003), https://doi.org/10.1016/S0032-3861(03)00167-8.
- 85S. N. Swain, S. M. Biswal, P. K. Nanda, and P. L. Nayak, J. Polymer Environ. 12, 35–42 (2004), https://doi.org/10.1023/B:JOOE.0000003126.14448.04.
- 86J. Zhang, L. Jiang, L. Zhu, J-l. Jane, and P. Mungara, Biomacromolecules 7, 1551–1561 (2006), https://doi.org/10.1021/bm050888p.
- 87P. D. S. C. Mariani, K. Allganer, F. B. Oliveira, E. J. B. N. Cardoso, and L. H. Innocentini-Mei, Polym. Test. 28, 824–829 (2009), https://doi.org/10.1016/j.polymertesting.2009.07.004.
- 88P. Mungara, T. Chang, J. Zhu, and J. Jane, J. Polym. Environ. 10, 31–37 (2002), https://doi.org/10.1023/A:1021018022824.
- 89Z. Zhong and X. S. Sun, Polymer 42, 6961–6969 (2001), https://doi.org/10.1016/S0032-3861(01)00118-5.
- 90J. John, J. Tang, and M. Bhattacharya, Polymer 42, 6961–6969 (2001), https://doi.org/10.1016/S0032-3861(97)00553-3.
- 91P. Matzinos, V. Tserki, C. Gianikouris, E. Pavlidou, and C. Panayiotou, Eur. Polym. J. 38, 1713–1720 (2002), https://doi.org/10.1016/S0014-3057(02)00061-7.
- 92P. Sarazin, G. Li, W. J. Orts, and B. D. Favis, Polymer 49, 599–609 (2008), https://doi.org/10.1016/j.polymer.2007.11.029.
- 93C. C. Rusa and A. E. Tonelli, Macromolecules 33, 5321–5324 (2000), https://doi.org/10.1021/ma000746h.
- 94R. Mani, J. Tang, and M. Bhattacharya, Macromol. Rapid Commun. 19, 283–286 (1998), https://doi.org/10.1002/(SICI)1521-3927(19980601)19:6<283::AID-MARC283>3.0.CO;2-C.
10.1002/(SICI)1521-3927(19980601)19:6<283::AID-MARC283>3.0.CO;2-C CAS Web of Science® Google Scholar
- 95B. Kim and S. Woo, Polym. Bull. 41, 707–712 (1998), https://doi.org/10.1007/s00289005042210.1007/s002890050422.
- 96V. Liu Tsang and S. N. Bhatia, Adv. Drug Deliv. Rev. 56, 1635–1647 (2004), https://doi.org/10.1016/j.addr.2004.05.001.
- 97V. Guarino, F. Causa, and L. Ambrosio, J. Appl. Biomater. Biomech. 5, 149–157 (2007).
- 98L. Sorrentino, M. Aurilia, and S. Iannace, Adv. Polym. Technol. 30, 234–243 (2011), https://doi.org/10.1002/adv.20219.
- 99L. Sorrentino, M. Aurilia, L. Cafiero, and S. Iannace, J. Appl. Polym. Sci. 122, 3701–3710 (2011), https://doi.org/10.1002/app.34784.
- 100V. Guarino, A. Guaccio, D. Guarnieri, P. A. Netti, and L. Ambrosio, J. Biomater. Appl 27, 241–254 (2012), https://doi.org/10.1177/0885328211401056.
- 101M. Avella, M. Cocca, M. E. Errico, and G. Gentile, J. Cell. Plast. 47, 271–281 (2011), https://doi.org/10.1177/0021955X11407401.
- 102M. Avella, M. Cocca, M. E. Errico, and G. Gentile, J. Cell. Plast. 48, 459–470 (2012), https://doi.org/10.1177/0021955X12449639.
- 103V. Guarino, A. Salerno, F. Causa, L. Ambrosio, and P. A. Netti. Mater. Sci. Technol. 24, 9 (2008), https://doi.org/10.1179/174328408X341799.
- 104Q. Xu, X. Ren, Y. Chang, J. Wang, L. Yu, and K. Dean, J. Appl. Polym. Sci. 94, 593–597 (2004), https://doi.org/10.1002/app.20726.
- 105S. Liu, Z. He, G. Xu, and X. Xiao, Mater. Sci. Eng., C 44, 201–208 (2014), https://doi.org/10.1016/j.msec.2014.08.012.
- 106C. Schugens, V. Maquet, C. Grandfils, R. Jerome, and P. Teyssie, J. Biomed. Mater. Res. 30, 449–461 (1996), https://doi.org/10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P.
10.1002/(SICI)1097-4636(199604)30:4<449::AID-JBM3>3.0.CO;2-P CAS PubMed Web of Science® Google Scholar
- 107P. X. Ma and R. Y. Zhang, J. Biomed. Mater. Res. 56, 469–477 (2001), https://doi.org/10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-H.
10.1002/1097-4636(20010915)56:4<469::AID-JBM1118>3.0.CO;2-H CAS PubMed Web of Science® Google Scholar
- 108X. Jing, H.-Y. Mi, T. Cordie, M. Salick, X.-F. Peng, and L.-S. Turng, Ind. Eng. Chem. Res. 53, 17909–17918 (2014), https://doi.org/10.1021/ie5034073.
- 109P. X. Ma, Mater. Today, 7, 30–40 (2004), https://doi.org/10.1016/S1369-7021(04)00233-0.
- 110A. Salerno, S. Iannace, and P. A. Netti, Macromol. Biosci. 8, 655–664 (2008), https://doi.org/10.1002/mabi.200700278.
- 111C. Tu, Q. Cai, J. Yang, Y. Wan, Y. Bei, and S. Wang, Polym. Adv. Technol. 14, 565–573 (2003).
- 112S. J. Hollister, Nat. Mater. 4, 518–524 (2005), https://doi.org/10.1038/nmat1421.
- 113L. Eloma, S. Teixeir, R. Hakal, H. Korhonen, D. W. Grijpma, and J. V. Seppälä, Acta Biomater. 7, 3850–3856 (2011), https://doi.org/10.1016/j.actbio.2011.06.039.
- 114R. A. Harris, H. A. Newlyn, R. J. M. Hague, and P. Dickens, Int. J. Mach. Tools Manuf. 43, 879–887 (2003), https://doi.org/10.1016/S0890-6955(03)00080-4.
- 115V. Guarino, R. Altobelli, V. Cirillo, A. Cummaro, and L. Ambrosio, Polym. Adv. Technol. 26, 1359–1369 (2015), https://doi.org/10.1002/pat.3588.
- 116G. Hochleitner, T. Jüngst, T. D. Brown, K. Hahn, C. Moseke, F. Jakob, P. D. Dalton, and J. Groll, Biofabrication 7, 035002 (2015), https://doi.org/10.1088/1758-5090/7/3/035002.
- 117P. D. Dalton, C. Vaquette, B. L. Farrugia, T. R. Dargaville, T. D. Brown, and D. W. Hutmacher, Biomater. Sci. 1, 171–185 (2013).
- 118J. Visser, F. P. W. Melchels, J. E. Jeon, E. M. van Bussel, L. S. Kimpton, H. M. Byrne, W. J. A. Dhert, P. D. Dalton, D. W. Hutmacher, and J. Malda. Nat. Commun. 6, 6933 (2015), https://doi.org/10.1038/ncomms7933.
- 119B. K. Kim, S. J. Hwang, J. B. Park, and H. J. Park, J. Microencapsul. 22, 193–203 (2005), https://doi.org/10.1080/02652040400015346.
- 120Yi.-Y. Yang, T.-S. Chung, and N. Ping, Biomaterials 22, 231–241 (2001), https://doi.org/10.1016/S0142-9612(00)00178-2.
- 121S. Zhou, X. Deng, and H. Yang, Biomaterials 24, 3563–3570 (2003), https://doi.org/10.1016/S0142-9612(03)00207-2.
- 122R. L. Sastre, M. D. Blanco, C. Teijo, R. Olmo, and J. M. Teijo, Drug Dev. Res. 63, 41–53 (2004), https://doi.org/10.1002/ddr.10396.
- 123S. R. Jameela, N. Suma, and A. Jayakrishnan, J. Biomater. Sci., Polym. Ed. 8(1997), 457–466 (1997), https://doi.org/10.1163/156856297X00380.
- 124N. K. Varde and D. W. Pack, Expert Opin. Biol. Ther. 4, 35–51 (2004), https://doi.org/10.1517/14712598.4.1.35.
- 125D. M. O. Kiminta, G. Braithwaite, and P. F. Luckham, in: J. C. Salamone, ed., Polymer Materials Encyclopedia, Vol. 1. CRC Press, Boca Raton, Fla., 1996, pp. 1298–309.
- 126S. Freiberg and X. Zhu, Int. J. Pharm. 282, 1–18 (2004).
- 127X. Wang, Y. Wang, K. Wei, N. Zhao, S. Zhang, and J. Chen, J. Mater. Process. Technol. 209, 348–354 (2009).
- 128D. V. Ramesh, Trends Biomater. Artif. Organs, 23, 21–33 (2009).
- 129D. V. Ramesh, Trends Biomater. Artif. Organs, 23, 46–54 (2009).
- 130V. Coccoli, A. Luciani, S. Orsi, V. Guarino, F. Causa, and P. A. Netti, J. Mater. Sci., Mater. Med. 19, 1703–1711 (2008), https://doi.org/10.1007/s10856-007-3253-9.
- 131J. M. Weissman, H. B. Sunkara, A. S. Tee, and S. A. Asher, Science 274, 959–965 (1996).
- 132H. D. H. Strover and K. Li, in J. C. Salamone, ed., Polymer Materials Encyclopedia, Vol. 1. CRC Press, Boca Raton, Fla., 1996. pp. 1900–1905
- 133Y. Y. Yang, T. S. Chung, X. L. Bai, and W. K. Chan, Chem. Eng. Sci. 55, 2223–2236 (2000), https://doi.org/10.1016/S0009-2509(99)00503-5.
- 134J. Lee, S. Oh, M. K. Joo, and B. Jeong, J. Phys. Chem. Solids 69, 1596–1599 (2008), https://doi.org/10.1016/j.jpcs.2007.09.016.
- 135J. K. Vasir, K. Tambwekar, and S. Garg, Int J. Pharm. 255, 13–32 (2003), https://doi.org/10.1016/S0378-5173(03)00087-5.
- 136P. A. Burke, L. A. Klumb, J. D. Herberger, X. C. Nguyen, R. A. Harrell, and M. Zordich, Pharm. Res. 21, 500–506 (2004), https://doi.org/10.1023/B:PHAM.0000019305.79599.a5.
- 137E. A. Reverchon, R. S. Cardea, and G. D. Porta, J. Supercrit. Fluids, 47, 484–492 (2009), https://doi.org/j.supflu.2008.10.001.
- 138Q. Li Loh and C. Choong, Tissue Eng., Part B 19, 485–502 (2013), https://doi.org/10.1089/ten.teb.2012.0437.
- 139Guarino, V. Cirillo, P. Taddei, M. A. Alvarez-Perez, and L. Ambrosio. Macromol Biosci. 11, 1694–1705 (2011), https://doi.org/10.1002/mabi.201100204.
- 140V. Guarino, M. Lewandowska, M. Bil, B. Polak, and L. Ambrosio, Compos. Sci. Technol. 70, 1826–1837 (2010), https://doi.org/compscitech.2010.06.015.
- 141V. Guarino, P. Taddei, M. Di Foggia, C. Fagnano, G. Ciapetti, and L. Ambrosio, Tissue Eng., Part A 15, 3655–3668 (2009), https://doi.org/10.1089/ten.tea.2008.0543.
- 142V. Guarino, S. Scaglione, M. Sandri, M. A. Alvarez Perez, A. Tampieri, R. Quarto, and L. Ambrosio. J. Tissue Eng. Regener. Med. 4, 291–303 (2014) https://doi.org/10.1002/term.1521.
- 143V. Guarino, M. Galizia, M. A. Alvarez-Perez, G. Mensitieri, and L. Ambrosio, J. Biomed. Mater. Res., Part A 103, 1095–1105 (2015), https://doi.org/10.1002/jbm.a.35246.
- 144V. Guarino, F. Urciuolo, M. A. Alvarez-Perez, B. Mele, P. A. Netti, and L. Ambrosio, J. R. Soc. Interface. 9, 2201–2212 (2012)
- 145V. Guarino, A. Gloria, M. G. Raucci, R. De Santis, and L. Ambrosio, Int. Mater. Rev. 57, 256–275 (2012)
- 146S. Scaglione, V. Guarino, M. Sandri, A. Tampieri, L. Ambrosio, and R. Quarto, J. Mater. Sci., Mater. Med. 23, 117–128 (2012)
- 147V. Guarino, F. Veronesi, M. Marrese, G. Giavaresi, M. Sandri, A. Tampieri, M. Fini, and L. Ambrosio, Biomed. Mater. 11, 015018 (2016), https://doi.org/10.1088/1748-6041/11/1/015018.
- 148A. Guaccio, V. Guarino, M. A. Alvarez-Perez, V. Cirillo, P. A. Netti, and L. Ambrosio, Biotechnol. Bioeng. 108, 1965–1976 (2011), https://doi.org/10.1002/bit.23113.
- 149V. Guarino, F. Causa, P. A. Netti, G. Ciapetti, S. Pagani, D. Martini, N. Baldini, and L. Ambrosio, J. Biomed. Mater. Res., Part B 86, 548–557 (2008), https://doi.org/10.1002/jbm.b.31055.
- 150V. Guarino, A. Guaccio, and L. Ambrosio, J Appl. Biomater. Biomech. 9, 34–39 (2011), https://doi.org/10.5301/JABB.2011.6473.
- 151A. Raizada, A. Bandari, and B. Kumar, Int. J. Pharm. Res. Dev. 2, 9–20 (2010)
- 152V. R. Sinha, K. Bansal, R. Kaushik, R. Kumria, and A. Trehan, Int. J. Pharm. 278, 1–23 (2004), https://doi.org/10.1016/j.ijpharm.2004.01.044.
- 153J. Koleske, in D. Paul and S. Newman, eds., Polymer Blends, Academic Press Inc., New York, 1978, pp. 369–389
10.1016/B978-0-12-546802-2.50018-X Google Scholar
- 154R. Ortega-Toro, G. Santagata, G. Gomez d'Ayala, P. Cerruti, P. T. Oliag, M. A. Chiralt Boix, and M. Malinconico, Carbohydr. Polym. 147, 16–27 (2016), https://doi.org/10.1016/j.carbpol.2016.03.070.
- 155Y. Wan, X. Lu, S. Dalai, and J. Zhang, Thermochim. Acta 487, 33–38 (2009), https://doi.org/10.1016/j.tca.2009.01.007.
- 156F. A. Sheikh, N. A. Barakat, M. A. Kanjwal, S. Aryal, M. S. Khil, and H. Y. Kim, J. Mater. Sci., Mater. Med. 20, 821–831 (2009), https://doi.org/10.1007/s10856-008-3637-5.
- 157A. Andukuri, M. Kushwaha, A. Tambralli, J. M. Anderson, D. R. Dean, J. L. Berry, Y. D. Sohn, Y. S. Yoon, B. C. Brott, and H. W. Jun, Acta Biomater. 7, 225–233 (2011), https://doi.org/10.1016/j.actbio.2010.08.013.
- 158E. Frazza, E. A. Schmitt, and J. Biomed. Mater. Res. Symp. 1, 43–58 (1971), https://doi.org/10.1002/jbm.820050207.
- 159J. C. Middleton and A. J. Tipton, Biomaterials 21, 2335–2346 (2000), https://doi.org/10.1016/S0142-9612(00)00101-0.
- 160K. W. Ng, H. N. Achuth, S. Moochhala, T. C. Lim, and D. W. Hutmacher, J. Biomater. Appl., Polym. Ed. 18, 925–938 (2007), https://doi.org/10.1163/156856207781367693.
- 161D. S. Jones, J. Djokic, C. P. McCoy, and S. P. Gorman, Biomaterials 23, 4449–4458 (2002), https://doi.org/10.1016/S0142-9612(02)00158-8.
- 162M. D. Dhanaraju, D. Gopinath, M. R. Ahmed, R. Jayakumar, and C. Vamsadhara, J. Biomed. Mater. Res., Part A. 76, 63–72 (2006), https://doi.org/10.1002/jbm.a.30458.
- 163G. Ma, C. Song, H. Sun, J. Yang, and X. Leng, Contraception 74, 141–147 (2006), https://doi.org/10.1016/j.contraception.2006.02.013.
- 164C. M. Agrawal and R. B. Ray, J. Biomed. Mater. Res. 55, 141–150 (2001), https://doi.org/10.1002/1097-4636(200105)55:2<141::AID-JBM1000>3.0.CO;2-J.
- 165T. J. Corden, I. A. Jones, C. D. Rudd, P. Christian, S. Downes, and K. E. McDougall, Biomaterials 21, 713–724 (2000), https://doi.org/10.1016/S0142-9612(99)00236-7.
- 166L. Onal, S. Cozien-Cazuc, I. A. Jones, and C. D. Rudd, J. Appl. Polym. Sci. 107, 3750–3755 (2008), https://doi.org/10.1002/app.27518
- 167I. Ahmed, A. J. Parsons, G. Palmer, J. C. Knowles, G. S. Walkers, and C. D. Rudd, Acta Biomater. 4, 1307–1314 (2008), https://doi.org/10.1016/j.actbio.2008.03.018.
- 168G. Davis and J. H. Song, Ind. Crops Prod. 23, 147–161 (2006), https://doi.org/10.1016/j.indcrop.2005.05.004.
- 169K. Petersen, P. Nielsen, G. Bertelsen, M. Lawther, M. Olsen, N. Nilsson, and G. Mortensen, Trends Food Sci. Technol. 10, 52–68 (1999), https://doi.org/10.1016/S0924-2244(99)00019-9.
- 170C. Bastioli, V. Bellotti, M. Camia, L. Del Giudice, and A. Rallis, in Y. Doi and K. Fukuda, eds., Biodegradable Plastics and Polymers, Elsevier, Amsterdam, 1994. pp. 200–213.
- 171V. Siracusa, P. Rocculi, S. Romani, and M. Dalla Rosa, Trends Food Sci. Technol. 19, 634–643 (2008), https://doi.org/10.1016/j.tifs.2008.07.003.
- 172G. Mensitieri, E. Di Maio, G. G. Buonocore, I. Nedi, and L. Sansone, Trends Food Sci. Technol. 22, 72–80 (2011), https://doi.org/10.1016/j.tifs.2010.10.001.
- 173M. Oliviero , PhD ThesisUniversity of Naples Federico II, 2008, available at http://www.fedoa.unina.it/3293, access date 23 January 2017.
- 174L. Sansone, PhD Thesis, University of Naples Federico II, 2008, available at http://www.fedoa.unina.it/3302/, access date 23 January 2017.
- 175C. Swapna Joseph, K. V. Harish Prashanth, N. K. Rastogi, A. R. Indiramma, S. Yella Reddy, and K. S. M. S. Raghavarao, Food Bioprocess Technol. 4, 1179–1185 (2011), https://doi.org/10.1007/s11947-009-0203-1.
- 176D. V. Plackett, V. K. Holm, P. Johansen, S. Ndoni, P. V. Nielsen, T. Sipilainen-Malm, A. Södergård, and S. Verstichel, Packag. Technol. Sci. 19, 1–24 (2006), https://doi.org/10.1002/pts.704.
- 177M. A. Del Nobile, A. Conte, G. G. Buonocore, A. L. Incoronato, A. Massaro, and O. Panza, J. Food Eng. 93, 1–6 (2009), https://doi.org/10.1016/j.jfoodeng.2008.12.022.
- 178A. Iwamoto, Y. Tokiwa, and J. Appl. Polym. Sci. 52, 1357–1360 (1994), https://doi.org/10.1002/app.1994.070520920.
- 179H. Tsuji and T. Ishizaka, Macromol. Biosci. 1, 59–65 (2001), https://doi.org/10.1002/1616-5195(20010301)1:2<59::AID-MABI59>3.0.CO;2-6.
- 180G. Bogoeva-Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, and M. E. Errico, Polym. Compos. 28, 98–107 (2007), https://doi.org/10.1002/pc.20270.
- 181T. Gurunathan, S. Mohanty, and S. K. Nayak, Composites, Part A 77, 1–25 (2015), https://doi.org/10.1016/j.compositesa.2015.06.007.
- 182D. Puglia, J. Biagiotti, and J. M. Kenny, J. Nat. Fibers 1, 23–65 (2005), https://doi.org/10.1300/J395v01n03_03.
- 183K. Van de Velde and P. Kiekens, Polym. Test. 21, 433–442 (2002), https://doi.org/10.1016/S0142-9418(01)00107-6.
- 184M. J. John and R. D. Anandjiwala, Polym. Compos. 29, 187–207 (2008), https://doi.org/10.1002/pc.20461.
- 185A. K. Mohanty, M. Misra, and L. T. Drzal, Compos. Interfaces 8, 313–343 (2012), https://doi.org/10.1163/156855401753255422.
- 186M. J. John and S. Thomas, Carbohydr. Polym. 71, 343–364 (2008), https://doi.org/10.1016/j.carbpol.2007.05.040.
- 187M-p. Ho, H. Wang, J.-H. Lee, C-k. Ho, K-t-. Lau, J. Leng, D. Hui, Composites, Part B. 43, 3549–3562 (2012), https://doi.org/10.1016/j.compositesb.2011.10.001.
- 188H. Xu, L. Wang, C. Teng, and M. Yu, Polym. Bull. 61, 663–670 (2008), https://doi.org/10.1007/s00289-008-0986-7.
- 189V. P. Cyras, J. M. Kenny, and A. Vazquez, Polym. Eng. Sci. 41, 1521–1528 (2001), https://doi.org/10.1002/pen.10851.
- 190V. P. Cyras, S. Iannace, J. M. Kenny, and A. Vázquez, Polym. Compos. 22, 104–110 (2001), https://doi.org/10.1002/pc.10522.
- 191V. P. Cyras, J. F. Martucci, S. Iannace, and A. Vazquez, J. Thermoplast. Comp. 15, 253–265 (2002), https://doi.org/10.1177/0892705702015003454.
- 192S. Shibata, Y. Cao, and I. Fukumoto, Composites, Part A 39, 640–646 (2008), https://doi.org/10.1016/j.compositesa.2007.10.021.
- 193A. Arbelaiz, B. Fernández, A. Valea, and I. Mondragon, Carbohydr. Polym. 64, 224–232 (2006), https://doi.org/10.1016/j.carbpol.2005.11.030.
- 194N. Teramoto, K. Urata, K. Ozawa, and M. Shibata, Polym. Degrad. Stab. 86, 401–409 (2004), https://doi.org/10.1016/j.polymdegradstab.2004.04.026.
- 195Z. N. Azwa, B. F. Yousif, A. C. Manalo, and W. Karunasena, Mater. Des. 47, 424–442, (2013), https://doi.org/10.1016/j.matdes.2012.11.025.
- 196M. U. Wahit, N. I. Akos, and W. A. Laftah, Polym. Compos. 33, 1045–1053 (2012), https://doi.org/10.1002/pc.22249.
- 197C. R. di Franco, V. P. Cyras, J. P. Busalmen, R. A. Ruseckaite, and A. Vázquez, Polym. Degrad. Stab. 86, 95–103 (2004), https://doi.org/10.1016/j.polymdegradstab.2004.02.009.
- 198V. B. Carmona, A. de Campos, J. M. Marconcini, and L. H. Capparelli Mattoso, J. Therm. Anal. Calorim. 115, 153–160 (2014), https://doi.org/10.1007/s10973-013-3259-0.