Photoresponsive Azo Polymer Films
Xiaogong Wang
Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorXiaogong Wang
Department of Chemical Engineering, Tsinghua University, Beijing, People's Republic of China
Search for more papers by this authorAbstract
Polymers containing aromatic azo chromophores have been the subject of intense investigation due to their unique functions and potential applications. Many of the photoresponsive functions are related to solid films made of the azo polymers. Light absorption and electronic excitation of the aromatic azo cores are the essential steps triggering photochemical effects. Owing to the trans–cis isomerization of azo chromophores, azo polymers can exhibit a variety of photoresponsive functions, such as molecular orientation, macroscopic anisotropy, surface relief structure formation, photomechanical deformations of azo liquid crystal elastomers (LCEs), and nonlinear optical properties. Many of these functions are unprecedented for polymers and other materials, attracting research interest both for fundamental understanding and possible applications. This article starts with the introduction of basic concepts and terminology, which are typically used to describe the photoresponsive properties. The following sections are devoted to azo polymer syntheses, methods to prepare solid films, and main functions of the solid films. Some of the most interesting functions such as the photoinduced orientation and anisotropy, photoinduced surface patterning, and photomechanical actions of azo LCEs are discussed in detail. The basic background and concepts are discussed at the level appropriate as a brief introduction. The material design and preparation, structure–property relationship, mechanism, and models are also presented.
Cited References
- 1O. Nuygen, in J. I. Kroschwitz, ed., Encyclopedia of Polymer Science and Engineering, 2nd ed., John Wiley & Sons, Inc., New York, 1985, Vol. 2, pp. 158–175.
- 2H. Zollinger, Azo and Diazo Chemistry: Aliphatic and Aromatic Compounds, Interscience Publishers, Inc., New York, 1961.
- 3G. S. Kumar, Azo Functional Polymers: Functional Group Approach in Macromolecular Design, Technomic Publishing Co., Inc., Lancaster, Pa., 1992.
- 4H. Rau, in J. F. Rabek, ed., Photochemistry and Photophysics, CRC Press, Inc., Boca Raton, Fla., 1990, Vol. 2, Chapt. 4, pp. 119–141.
- 5H. Rau, in H. Dürr and H. Bouas-Laurent, eds., Photochromism: Molecules and Systems, Elsevier, Amsterdam, the Netherlands, 1990, Chapt. 4, pp. 165–192.
- 6A. Natansohn and P. Rochon, Chem. Rev. 102, 4139–4175 (2002).
- 7M. S. Ho, A. Natansohn, C. Barrett, and P. Rochon, Can. J. Chem. 73, 1773–1778 (1995).
- 8G. S. Hartley, Nature 140, 281–281 (1937).
- 9J. A. Barltrop and J. D. Coyle, Principles of Photochemistry, John Wiley & Sons Ltd, Inc., New York, 1978.
- 10N. J. Turro, Modern Molecular Photochemistry, Benjamin/Cummings Publishing Co., Inc., Menlo Park, Calif., 1978.
- 11P. P. Birnbaum and D. W. G. Style, Trans Faraday Soc. 50, 1192–1196 (1954).
- 12J. Griffiths, Chem. Soc. Rev. 1, 481–493 (1972).
- 13S. Xie, A. Natansohn, and P. Rochon, Chem. Mater., 5, 403–411 (1993).
- 14N. K. Viswanathan, D. Y. Kim, S. P. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, and S. K. Tripathy, J. Mater. Chem. 9, 1941–1955 (1999).
- 15J. A. Delaire and L. Nakatani, Chem. Rev. 100, 1817–1845 (2000).
- 16D. Y. Curtin, E. J. Grubbs, and C. G. McCarty, J. Am. Chem. Soc. 88, 2775–2786 (1966).
- 17H. M. D. Bandara and S. C. Burdette, Chem. Soc. Rev. 41, 1809–1825 (2012).
- 18C. R. Crecca and A. E. Roitberg, J. Phys. Chem. A 110, 8188–8203 (2006).
- 19I. Conti, M. Garavelli, and G. Orlandi, J. Am. Chem. Soc. 130, 5216–5230 (2008).
- 20T. Cusati, G. Granucci, and M. Persico, J. Am. Chem. Soc. 133, 5109–5123 (2011).
- 21A. Akelah and A. Moet, Functionalized Polymers and Their Applications, Chapman and Hall, London, 1990.
- 22P. J. Flory, Principles of Polymer Chemistry, Cornell University Press Ltd., Ithaca, N.Y., 1953.
- 23G. Odian, Principles of Polymerization, 2nd ed., John Wiley & Sons, Inc., New York, 1981.
- 24A. Natansohn, P. Rochon, J. Gosselin, and S. Xie, Macromolecules 25, 2268–2273 (1992).
- 25S. Xie, A. Natansohn, and P. Rochon, Macromolecules 27, 1885–1890 (1994).
- 26D. Brown, A. Natansohn, and P. Rochon, Macromolecules 28, 6116–6123 (1995).
- 27M. S. Ho, A. Natansohn, and P. Rochon, Macromolecules 28, 6124–6127 (1995).
- 28M. S. Ho, A. Natansohn, and P. Rochon, Macromolecules 29, 44–49 (1996).
- 29X. Meng, A. Natansohn, C. Barrett, and P. Rochon, Macromolecules 29, 946–952 (1996).
- 30H. Ringsdorf and H. W. Schmidt, Makromol. Chem. 185, 1327–1334 (1984).
- 31M. Eich and J. H. Wendorff, Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
- 32T. Ikeda, S. Horiuchi, D. B. Karanjit, S. Kurihara, and S. Tazuke, Macromolecules 23, 36–42 (1990).
- 33Y. H. Han, B. Dufour, W. Wu, T. Kowalewski, and K. Matyjaszewski, Macromolecules 37, 9355–9365 (2004).
- 34L. Angiolini, T. Benelli, L. Giorgini, and E. Salatelli, Polymer 46, 2424–2432 (2005).
- 35D. R. Wang, Y. N. He, W. Deng, and X. G. Wang, Dyes Pigm. 82, 286–292 (2009).
- 36H. K. Hall, T. Kuo, and T. M. Leslie, Macromolecules 22, 3525–3529 (1989).
- 37W. Köhler, D. R. Robello, C. S. Willand, and D. J. Williams, Macromolecules 24, 4589–4599 (1991).
- 38F. Agolini and F. P. Gay, Macromolecules 3, 349–351 (1970).
- 39J. E. Riordan and H. S. Blair, Polymer 20, 196–202 (1979).
- 40M. Balasubramanian, M. J. Nanjan, and M. Santappa, Makromol. Chem. 182, 853–859 (1981).
- 41M. Irie and W. Schnabel, Macromolecules 14, 1246–1249 (1981).
- 42M. Irie, Y. Hirano, S. Hashimoto, and K. Hayashi, Macromolecules 14, 262–267 (1981).
- 43D. Jayaprakash, L. Ravikumar, and M. J. Nanjan, Makromol. Chem. Rapid Commun. 2, 611–615 (1981).
- 44P. Sachindrapal, S. Ramasamy, and M. J. Nanjan, Polym. Bull. 5, 417–424 (1981).
- 45D. Jayaprakash, M. Balasubramanian, and M. J. Nanjan, J. Polym. Sci. A: Polym. Chem. 23, 2319–2326 (1985).
- 46M. Chen, L. P. Yu, L. R. Dalton, Y. Q. Shi, and W. H. Steier, Macromolecules 24, 5421–5428 (1991).
- 47S. Hvilsted, F. Andruzzi, and P. S. Ramanujam, Opt. Lett. 17, 1234–1236 (1992).
- 48C. S. Kang, H. J. Winkelhahn, M. Schulze, D. Neher, and G. Wegner, Chem. Mater. 6, 2159–2166 (1994).
- 49N. Nemoto, F. Miyata, Y. Nagase, J. Abe, M. Hasegawa, and Y. Shirai, Macromolecules 29, 2365–2371 (1996).
- 50M. Chen, L. R. Dalton, L. P. Yu, Y. Q. Shi, and W. H. Steier, Macromolecules 25, 4032–4035 (1992).
- 51Y. Q. Shi, W. H. Steier, M. Chen, L. P. Yu, and L. R. Dalton, Appl. Phys. Lett. 60, 2577–2579 (1992).
- 52N. P. Wang, T. M. Leslie, S. P. Wang, and S. T. Kowel, Chem. Mater. 7, 185–191 (1995).
- 53D. Yu, A. Gharavi, and L. P. Yu, J. Am. Chem. Soc. 117, 11680–11686 (1995).
- 54T. A. Chen, A. K. Y. Jen, and Y. M. Cai, J. Am. Chem. Soc. 117, 7295–7296 (1995).
- 55T. Verbiest, D. M. Burland, M. C. Jurich, V. Y. Lee, R. D. Miller, and W. Volksen, Science 268, 1604–1606 (1995).
- 56R. D. Miller, D. M. Burland, M. Jurich, V. Y. Lee, C. R. Moylan, J. I. Thackara, R. J. Twieg, T. Verbiest, and W. Volksen, Macromolecules 28, 4970–4974 (1995).
- 57D. Yu, A. Gharavi, and L. P. Yu, Macromolecules 29, 6139–6142 (1996).
- 58H. Saadeh, A. Gharavi, D. Yu, and L. P. Yu, Macromolecules 30, 5403–5407 (1997).
- 59N. Tsutsumi, M. Morishima, and W. Sakai, Macromolecules 31, 7764–7769 (1998).
- 60T. Seki, M. Sakuragi, Y. Kawanishi, Y. Suzuki, T, Tamaki, R. I. Fukuda, and K. Ichimura, Langmuir 9, 211–218 (1993).
- 61T. A. Chen, A. K. Y. Jen, and Y. M. Cai, Macromolecules 29, 535–539 (1996).
- 62L. F. Wu, X. L. Tuo, H. Cheng, Z. Chen, and X. G. Wang, Macromolecules 34, 8005–8013 (2001).
- 63X. G. Wang, J. I. Chen, S. Marturunkakul, L. Li, J. Kumar, and S. K. Tripathy, Chem. Mater. 8, 45–50 (1997).
- 64X. G. Wang, J. Kumar, S. K. Tripathy, L. Li, J. I. Chen, and S. Marturunkakul, Macromolecules 30, 219–225 (1997).
- 65Y. N. He, X. G. Wang, and Q. X. Zhou, Polymer 43, 7325–7333 (2002).
- 66X. G. Wang, K. Yang, J. Kumar, S. K. Tripathy, K. G. Chittibabu, L. Li, and G. Lindsay, Macromolecules 31, 4126–4134 (1998).
- 67X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, Chem. Mater. 10, 1546–1553 (1998).
- 68X. L. Wang, J. J. Yin, and X. G. Wang, Macromolecules 44, 6856–6867 (2011).
- 69X. L. Wang, J. J. Yin, and X. G. Wang, Polymer 52, 3344–3356 (2011).
- 70Y. Q. Zhou and X. G. Wang, Macromol. Chem. Phys. 216, 2040–2047 (2015).
- 71Y. Q. Zhou, B. Tang, and X. G. Wang, Polymer 60, 292–301 (2015).
- 72 K. Matyjaszewski, ed., Controlled Radical Polymerization, American Chemical Society, Washington, D.C., 1997.
- 73Y. Q. Tian, K. Watanabe, X. X. Kong, J. Abe, and T. Iyoda, Macromolecules 35, 3739–3747 (2002).
- 74J. Yang, D. Levy, W. Deng, P. Keller, and M. H. Li, Chem. Commun. 4345–4347 (2005).
- 75H. F. Yu, A. Shishido, T. Ikeda, and T. Iyoda, Macromol. Rapid Commun. 26, 1594–1598 (2005).
- 76X. H. He, H. L. Zhang, D. Y. Yan, and X. Y. Wang, J. Polym. Sci., A: Polym. Chem. 41, 2854–2864 (2003).
- 77D. R. Wang, H. F. Ren, X. Q. Wang, and X. G. Wang, Macromolecules 41, 9382–9388 (2008).
- 78L. Cui, Y. Zhao, A. Yavrian, and T. Galstian, Macromolecules 36, 8246–8252 (2003).
- 79L. Cui, X. Tong, X. H. Yan, G. J. Liu, and Y. Zhao, Macromolecules 37, 7097–7104 (2004).
- 80Y. H. Han, B. Dufour, W. Wu, T. Kowalewski, and K. Matyjaszewski, Macromolecules 37, 9355–9365 (2004).
- 81H. F. Yu, A. Shishido, T. Iyoda, and T. Ikeda, Macromol. Rapid Commun. 28, 927–931 (2007).
- 82W. Su, K. Han, Y. H. Luo, Z. Wang, Y. M. Li, and Q. J. Zhang, Macromol. Chem. Phys. 208, 955–963 (2007).
- 83W. Su, Y. H. Luo, Q. Yan, S. Wu, K. Han, and Q. J. Zhang, Macromol. Rapid Commun. 28, 1251–1256 (2007).
- 84Y. Y. Zhang, Z. P. Cheng, X. R. Chen, W. Zhang, J. H. Wu, J. Zhu, and X. L. Zhu, Macromolecules 40, 4809–4817 (2007).
- 85Y. Zhao, B. Qi, X. Tong, and Y. Zhao, Macromolecules 41, 3823–3831 (2008).
- 86F. Vögtle, S. Gestermann, R. Hesse, H. Schwierz, and B. Windisch, Prog. Polym. Sci. 25, 987–1041 (2000).
- 87G. J. Wang and X. G. Wang, Polym. Bull. 49, 1–8 (2002).
- 88P. C. Che, Y. N. He, and X. G. Wang, Macromolecules 38, 8657–8663 (2005).
- 89I. Lévesque and M. Leclerc, Macromolecules 30, 4349–4352 (1997).
- 90M. Sukwattanasinitt, X. Wang, L. Li, X. Jiang, J. Kumar, S. K. Tripathy, and D. J. Sandman, Chem. Mater. 10, 27–29 (1998).
- 91O. Pieroni, A. Fissi, and G. Popova, Prog. Polym. Sci. 23, 81–123 (1998).
- 92O. Pieroni, A. Fissi, N. Angelini, and F. Lenci, Acc. Chem. Res. 34, 9–17 (2001).
- 93J. A. Zasadzinski, R. Viswanathan, L. Madsen, J. Garnaes, and D. K. Schwartz, Science 263, 1726–1733 (1994).
- 94D. K. Schwartz, Surf. Sci. Rep. 27, 241–334 (1997).
- 95J. Stumpe, T. Geue, T. Fischer, and H. Menzel, Thin Solid Films 284–285, 606–611 (1996).
- 96G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films 210, 831–835 (1992).
- 97Y. Lvov, S. Yamada, and T. Kunitake, Thin Solid Films 300, 107–112 (1997).
- 98X. G. Wang, S. Balasubramanian, L. Li, X. L. Jiang, D. J. Sandman, M. F. Rubner, J. Kumar, and S. K. Tripathy, Macromol. Rapid Commun. 18, 451–459 (1997).
- 99A. Laschewsky, E. Wischerhoff, M. Kauranen, and A. Persoons, Macromolecules 30, 8304–8309 (1997).
- 100F. Weigert, Verh. Dtsch. Phys. Ges. 21, 479–491 (1919) (in German).
- 101T. Todorov, L. Nikolova, and N. Tomova, Appl. Opt. 23, 4309–4312 (1984).
- 102T. Todorov, L. Nikolova, and N. Tomova, Appl. Opt. 23, 4588–4591 (1984).
- 103T. Todorov, L. Nikolova, K. Stoyanova, and N. Tomova, Appl. Opt. 24, 785–788 (1985).
- 104M. Eich, J. H. Wendorff, B. Reck, and H. Ringsdorf, Makromol. Chem. Rapid Commun. 8, 59–63 (1987).
- 105M. Eich and J. H. Wendorff, Makromol. Chem. Rapid Commun. 8, 467–471 (1987).
- 106J. Stumpe, L. Muller, D. Kreysig, G. Hauck, H. D. Koswig, R. Ruhmann, and J. Rubner, Makromol. Chem. Rapid Commun. 12, 81–87 (1991).
- 107Y. Q. Shi, W. H. Steier, L. P. Yu, M. Chen, and L. R. Dalton, Appl. Phys. Lett. 59, 2935–2937 (1991).
- 108K. Anderle, R. Birenheide, M. J. Werner, and J. H. Wendorff, Liq. Cryst., 9, 691–699 (1991).
- 109C. Jones and S. Day, Nature 351, 15–15 (1991).
- 110M. Dumont, Mol. Cryst. Liq. Cry. 282, 437–450 (1996).
- 111M. Dumont and A. El. Osman, Chem. Phys. 245, 437–462 (1999).
- 112M. Fischer, A. El. Osman, P. A. Blanche, and M. Dumont, Syn. Metals 115, 139–144 (2000).
- 113S. P. Palto, L. M. Blinov, S. G. Yudin, G. Grewer, M. Schönhoff, and M. Lösche, Phys. Chem. Lett. 202, 308–314 (1993).
- 114S. P. Palto and G. Durand, J. Phys. II 5, 963–978 (1995).
- 115Y. W. Wang, Y. N. He, and X. G. Wang, Polym. Bull. 68, 1731–1746 (2012).
- 116K. Ichimura, Chem. Rev. 100, 1847–1873 (2000).
- 117V. Shibaev, A. Bobrovsky, and N. Boiko, Prog. Polym. Sci. 28, 729–836 (2003).
- 118D. R. Wang and X. G. Wang, Prog. Polym. Sci. 38, 271–301 (2013).
- 119H. F. Yu and T. Ikeda, Adv. Mater. 23, 2149–2180 (2011).
- 120O. N. Jr. Oliveira, D. S. Jr. dos Santos, D. T. Balogh, V. Zucolotto, and C. R. Mendonca, Adv. Colloid Interface Sci. 116, 179–192 (2005).
- 121J. Gao, Y. N. He, H. P. Xu, B. Song, X. Zhang, Z. Q. Wang, and X. G. Wang, Chem. Mater. 19, 14–17 (2007).
- 122A. Priimage and A. Shevchenko, J. Polym. Sci. B. 52, 163–182 (2014)
- 123C. Frenz, A. Fuchs, H. W. Schmidt, U. Theissen, and D. Haarer, Macromol. Chem. Phys. 205, 1246–1258 (2004).
- 124M. Hächel, L. Kador, D. Kropp, C. Frenz, and H. W. Schmidt, Adv. Funct. Mater. 15, 1722–1727 (2005).
- 125L. Nikolova and P. S. Ramanujam, Polarization Holography, Cambridge University Press, New York, 2009.
- 126P. Rochon, E. Batalla, and A. Natansohn, Appl. Phys. Lett. 66, 136–138 (1995).
- 127D. Y. Kim, S. K. Tripathy, L. Li, and J. Kumar, Appl. Phys. Lett. 66, 1166–1168 (1995).
- 128X. L. Jiang, L. Li, J. Kumar, D. Y. Kim, V. Shivshankar, and S. K. Tripathy, Appl. Phys. Lett. 68, 2618–2620 (1996).
- 129F. L. Labarthet, T. Buffeteau, and C. Sourisseau, Appl. Phys. B 74, 129–137 (2002).
- 130P. S. Ramanujam, N. C. R. Holme, and S. Hvilsted, Appl. Phys. Lett. 68, 1329–1331 (1996).
- 131N. C. R. Holme, L. Nikolova, P. S. Ramanujamb, and S. Hvilsted, Appl. Phys. Lett. 70, 1518–1520 (1997).
- 132T. S. Lee, D. Y. Kim, X. L. Jiang, L. Li, J. Kumar, and S. Tripathy, Macromol. Chem. Phys. 198, 2279–2289 (1997).
- 133X. G. Wang, S. Balasubramanian, J. Kumar, S. K. Tripathy, and L. Li, Chem. Mater. 10, 1546–1553 (1998).
- 134M. Sukwattanasinitt, D. C. Lee, M. Kim, X. G. Wang, L. Li, K. Yang, J. Kumar, S. K. Tripathy, and D. J. Sandman, Macromolecules. 32, 7361–7368 (1999).
- 135S. Z. Yang, L. Li, A. L. Cholli, J. Kumar, and S. K. Tripathy, Biomacromolecules 4, 366–371 (2003).
- 136W. H. Li, T. Dohi, M. Hara, S. Nagano, O. Haba, K. Yonetake, and T. Seki, Macromolecules 45, 6618–6627 (2012).
- 137C. J. Barrett, A. Natansohn, and P. L. Rochon, J. Phys. Chem. 100, 8836–8842 (1996).
- 138J. Kumar, L. Li, X. L. Jiang, D. Y. Kim, T. S. Lee, and S. Tripathy, Appl. Phys. Lett. 72, 2096–2098 (1998).
- 139P. Lefin, C. Fiorini, and J. M. Nunzi, Opt. Mater. 9, 323–328 (1998).
- 140T. G. Pedersen, P. M. Johansen, N. C. R. Holme, and P. S. Ramanujam, Phys. Rev. Lett. 80, 89–92 (1998).
- 141C. Hubert, C. Fiorini-Debuisschert, I. Maurin, J. M. Nunzi, and P. Raimond, Adv. Mater. 14, 729–732 (2002).
- 142M. Warner and E. M. Terentjev, Liquid Crystal Elastomers, Oxford University Press, Oxford, UK, 2003.
10.1093/oso/9780198527671.001.0001 Google Scholar
- 143H. Finkelmann, H. J. Kock, and G. Rehage, Makromol. Chem. Rapid Commun. 2, 317–322 (1981).
- 144J. Küpfer and H. Finkelmann, Makromol. Chem. Rapid Commun. 12, 717–726 (1991).
- 145D. Lacey, H. N. Beattie, G. R. Mitchell, and J. A. Pople, J. Mater. Chem. 8, 53–60 (1998).
- 146H. Finkelmann, E. Nishikawa, G. G. Pereira, and M. Warner, Phys. Rev. Lett. 87, 015501 (2001).
- 147T. J. White, N. V. Tabiryan, S. V. Serak, U. A. Hrozhyk, V. P. Tondiglia, H. Koerner, R. A. Vaia, and T. J. Bunning, Soft Matter 4, 1796–1798 (2008).
- 148Y. L. Yu, M. Nakano, and T. Ikeda, Nature 425, 145–145 (2003).
- 149T. Ikeda, M. Nakano, Y. L. Yu, O. Tsutsumi, and A. Kanazawa, Adv. Mater. 15, 201–205 (2003).
- 150M. H. Li, P. Keller, B. Li, X. G. Wang, and M. Brunet, Adv. Mater. 15, 569–572 (2003).
- 151M. Warner and L. Mahadevan, Phys. Rev. Lett. 92, 134302 (2004).
- 152D. Corbett and M. Warner, Phys. Rev. Lett. 96, 237802 (2006).
- 153M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, Nat. Mater. 3, 307–310 (2004).
- 154N. Tabiryan, S. Serak, X. M. Dai, and T. Bunning, Opt. Ex. 13, 7442–7448 (2005).
- 155M. Yamada, M. Kondo, J. I. Mamiya, Y. L. Yu, M. Kinoshita, C. J. Barrett, and T. Ikeda, Angew. Chem., Int. Ed. 47, 4986–4988.
- 156C. L. van Oosten, C. W. M. Bastiaansen, and D. J. Broer, Nat. Mater. 8, 677–682 (2009).
- 157M. E. McConney, A. Martinez, V. P. Tondiglia, K. M. Lee, D. Langley, I. I. Smalyukh, and T. J. White, Adv. Mater. 25, 5880–5885 (2013).
- 158T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, and T. J. White, Science 347, 982–984 (2015).
- 159D. M. Burland, R. D. Miller, and C. A. Walsh, Chem. Rev. 94, 31–75 (1994).
- 160S. K. Yesodha, C. K. S. Pillai, and N. Tsutsumi, Prog. Polym. Sci. 29, 45–74 (2004).
- 161P. Gopalan, H. E. Katz, D. J. McGee, C. Erben, T. Zielinski, D. Bousquet, D. Muller, J. Grazul, and Y. Olsson, J. Am. Chem. Soc. 126, 1741–1747 (2004).
- 162Z. Sekkat and M. Dumont, Appl. Phys. B 54, 486–489 (1992).
- 163F. Charra, F. Kajzar, J. M. Nunzi, P. Raimond, and F. Idiart, Opt. Lett. 18, 941–943 (1993).
- 164W. Chalupczak, C. Fiorini, F. Charra, J. M. Nunzi, and P. Raimond, Opt. Commun. 126, 103–107 (1996).
- 165A. Apostoluk, J. M. Nunzi, and C. Fiorini, Opt. Lett. 29, 98–100 (2004).
General References
- 166T. Ikeda, J. Mater. Chem. 13, 2037–2057 (2003).
- 167T. Seki, Curr. Opin. Solid State Mater. Sci. 10, 241–248 (2006).
- 168T. Seki, Bull. Chem. Soc. Jpn. 80, 2084–2109 (2007).
- 169F. Ercole, T. P. Davis, and R. A. Evans, Polym. Chem. 1, 37–54 (2010).
- 170Y. Zhao, Macromolecules 45, 3647–3657 (2012).
- 171S. W. Lee, H. S. Kang, and J. K. Park, Adv. Mater. 24, 2069–2103 (2012).